Q	uestion	Answer	Marks	Part Marks and Guidance	
1		x = 2.5 oe $y = -2$	4	M1 for $12x + 3y = 24$ or $4x - 6y = 22$	For multiplying to get coefficients equal (allow 1 error)
				Dep M1 for $7x = -14$ or $14x = 35$ oe	For adding or subtracting (allow 1 error)
				A1 for $x = 2.5$ or $y = -2$	For either <i>x</i> or <i>y</i> correct as a fraction or recurring decimal isw Dep on M2
					If no more than 1 error in multiplication (either method) follow through for a maximum of 3 marks
				Or if sub'n used eg M1 for $2x - 3(8 - 4x) = 11$ Dep M1 for $14x = 35$ oe	Condone missing brackets
				A1 $x = 2.5$ for oe	Correct answer with no working scores 4

2		$x = 3 \qquad y = -2$	3	 B2 for one value correct Or for correct answers reversed OR M1 for equalising <i>x</i> or <i>y</i> coefficients And M1 for correctly adding or 	Allow one error or omission Allow one error or omission
					Allow one error or omission

3	(a)	110	1		
	(b)	4c + 2m = 378 $c = 79$ $m = 31$ nfww	3	M1 for multiplying one (or both) equation(s) to get either coefficient equal (allow 1 error) eg	If separate attempts made to
				4c + 4m = 440 or $2c + 2m = 2204c + 2m = 378$ $4c + 2m = 378M1(dep) for adding or subtracting as appropriate (allow 1 error) eg 2m = 62 or 2c = 158$	eliminate <i>x</i> and <i>y</i> mark to the candidate's benefit Correct <i>m</i> or <i>c</i> with no working implies M2
				Or if substitution used $M1$ for rearranging to find m or c eg $m = 110 - c$ or (allow 1 error if harder equation used) $M1$ (dep) for substituting eg $4c + 2(110 - c)$ or better (allow 1 error)	Correct answer with no working scores 3

4	(a	a)	5C + 6B = 30	1	oe eg allow $6B + 5C = 30$	Condone lower case
	(b	o)	[C =] 3 [B =] 2.50	3	M1 for multiplying one equation to get either coefficient equal (allow 1 error) A1 for either value correct	3 and 2.5 can score up to 2
					Mark final answer	Correct answer with no working scores 3

5	x = 1.4 y = -0.3	3	B2 for one value correct or for answers reversed OR M1 for equalising <i>x</i> or <i>y</i> coefficients M1 for correctly adding or subtracting <i>their</i> equations soi OR M1 for correct rearrangement into <i>x</i> = or <i>y</i> = M1 for correct substitution	Allow one error or omission

6	15x+10y = 25 or 9x+6y = 15 $15x-9y = 63 10x-6y = 42$	M1	For multiplying both equations to make either coefficient equal (allow 1 error) If substitution used M1 for rearranging one equation to get <i>x</i> or <i>y</i> (allow 1 error)	If candidate starts again mark to candidate's advantage
	19y = -38 or $19x = 57$	M1dep	For adding or subtracting as appropriate (allow 1 error) M1dep for substitution (allow 1 error)	
	$y = \frac{-38}{19}$ or $x = \frac{57}{19}$	A1FT	For either <i>x</i> or <i>y</i> correct oe isw	Withhold A mark if addition/subtraction leads directly to $\pm x = \dots$, or $\pm y = \dots$
	x = 3 y = -2	A1	Mark final answer	Correct answer with no working scores 4

7	Correct proof well explained and clearly laid out Correct proof well explained with: one reason missing layout not clear some use of poor mathematical language significant errors in spelling, punctuation or grammar	5	Condone minor errors in spelling, punctuation or grammar For lower mark — Correct method leading to 117° with: • significant omissions in calculation • more than one reason missing or correct method with one arithmetic error that would lead to answer other than 117°	Interior angle method Pentagon $180 - \frac{360}{5} = 108$ Octagon $180 - \frac{360}{8} = 135$ Exterior angles of a polygon (= 360) Angles on a straight line (= 180) $p = 360 - 108 - 135$ $= 117$ Angles round a point (= 360)
				Or [(n-2) × 180] ÷ n for n = 5 and 8 Then as above Or Listing multiples of 180 Then as above
	Any correct calculation with related reason seen eg Ext angle of pentagon $\frac{360}{5}$ = 72 with Exterior angles of a polygon = 360 Or any two angles seen from 72, 108, 45, 135, 243, 540, 720, 900, 1080	2-	For lower mark – Any correct calculation, angle or reason seen.	Or Exterior angle method Required angle clearly shown to be the sum of the two ext angles $\frac{360}{5} + \frac{360}{8} = 72 + 45$ $= 117$ Exterior angles of a polygon (= 360) If this method not clear here then max 3 marks
	Nothing of any worth.	0		$eg \frac{360}{5} + \frac{360}{8} = 72 + 45 gets 3$ = 117

8	(a)	160a + 20c = 6700 Clear division by 20	1	Or 1.6 <i>a</i> + 0.2 <i>c</i> = 67 Clear division by 0.2 oe	
	(b)	c = 15 with algebraic method	3	M1 for attempt to subtract B1 for a = 40	

9	$x^2 - 6x + 7 = 0$ or $-x^2 + 6x - 7 = 0$	2	M1 for eliminating <i>y</i> by equating or subtracting	Allow 1 error if subtracting equations
	$\frac{6\pm\sqrt{\left(6^2-4\times1\times7\right)}}{2\times1}$	М1	Or fully correct 'complete the square' Condone one error, either method	Their quadratic, NOT the given one
	x = 1.59 x = 4.41	B1 B1	After B0B0 allow SC1 for both values of <i>x</i> from 1.58578and 4.41421 rot to at least 1 dp	
	y = -0.82 to -0.83 and $y = 4.82$ to 4.83	B1 Dep	Dep on B1B1 or SC1 scored Correctly linked to a value of x	i.e. x = 1.59 $y = -0.83andx = 4.41$ $y = 4.83$

10	c = 8 dep on d correct	2	M1 for 2c + d = 10 or 2c - 6 = 10 or FT their d	
	d = -6	1	Condone answers reversed on answer line if clearly correct in body of script SC2 for answers reversed on answer line with no working	

11	x = -1 oe y = 5 nfww	3	M1 for multiplying one (or both) equation(s) to get either coefficient equal (allow 1 error) eg x+3y=14 $2x+6y=286x+3y=9$ $2x+y=3$	If no more than 1 error in multiplication (and no errors in addition/subtraction) follow through for a maximum of 2 marks
			A1FT for either x or y correct oe isw $y = 5$ or $x = -1$	If separate attempts made to eliminate <i>x</i> and <i>y</i> mark to the candidate's benefit Allow FT if exact or correct to at least 2sf
			Or if substitution used M1 for rearranging and attempt at substituting	Correct x or y with no working implies M1A1
			eg $x + 3(3-2x) = 14$ or 2(14-3y) + y = 3 or better (allow 1 error) then A mark as above	Correct answer with no working scores 3

Que	estion	Answer	Marks	Part Marks and Guidance	
12		Attempt to equate or subtract $x^2 + 4x - 12 = 0$	M1 A1	Mark best attempt	Attempt to rearrange for <i>y</i> and sub
				FT for <i>their</i> 3 term quadratic – not the original $-4 \pm \sqrt{(4^2 - 4 \times 1 \times -12)}$	$y^2 - 6y - 55$ [=0]
		(x + 6)(x - 2)	M2FT	Or for 2×1 oe Or for $-2 \pm \sqrt{16}$ Or M1FT for $(x \pm 6)(x \pm 2)$ seen or for $4^2 - 4 \times 1 \times -12$ seen or for $(x + 2)^2 - 4 - 12$ [=0]	(y – 11)(y + 5)
		x = -6 and $x = 2y = -5$ and $y = 11$	B1 B1	After B0 SC1 for one correct x,y pair	y = -5 and $y = 11x = -6$ and $x = 2$

13	$2x^{2} - 4x + 1 = 6 - x$ $2x^{2} - 3x - 5 [= 0]$	M1 A1	Or for an attempt to subtract the equations	Alternative method M1 for $y = 2(6 - y)^2 - 4(6 - y) + 1$ A1 for $2y^2 - 21y + 49 = 0$
	(2x-5)(x+1)	M2FT	FT their $2x^2 + px + q$, $pq \ne 0$ (NOT the given quadratic) M1 for $(2x \pm a)(x \pm b)$ a, $b \ne 0$ OR M1 for $\frac{-(-3) \pm \sqrt{()}}{2 \times 2}$ oe M1 for $(-3)^2 - 4 \times 2 \times -5$ oe	M2FT for $(2y - 7)(y - 7)$
	<i>x</i> = 2.5 oe	B1		B1 for <i>y</i> = 7
	x = -1	B1		B1 for <i>y</i> = 3.5 oe
	y = 3.5 oe and 7	B1	Correctly linked to x	B1 for $x = ^{-1}$ and 2.5 oe