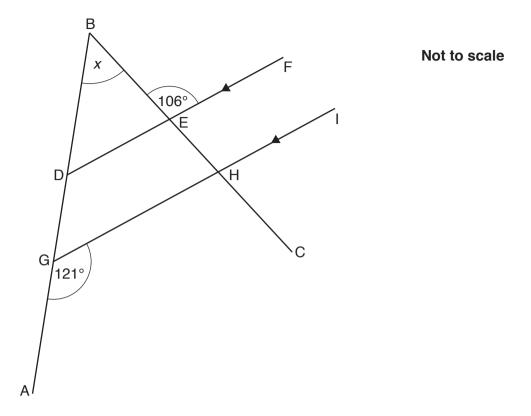

1 Chord PQ is parallel to tangent TRU.




Not to scale

Calculate the size of angle e. Give a geometrical reason for each stage of your working.

[5]

2 The diagram is made from four straight lines. DEF and GHI are parallel.

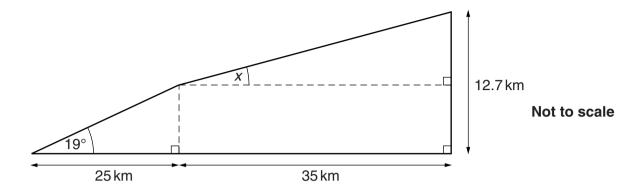


Calculate the size of angle *x*. Give a reason for each stage of your working.

| 3 | An aircraft flew fi | rom Amsterdam | to Singapore. |
|---|---------------------|---------------|---------------|
|---|---------------------|---------------|---------------|

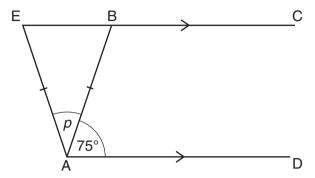
(a) On the flight there were 325 passengers.

The ratio adults: children on this flight was 23:2.


How many children were on this flight?

| (a) | ) | [2] |
|-----|---|-----|
|     |   |     |

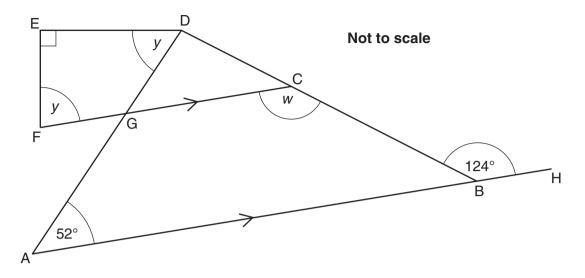
**(b)** As the aircraft left Amsterdam, at sea level, it climbed at an angle of 19° to the horizontal until it was above a point 25 km from Amsterdam.


It then changed the angle of climb until its height above sea level was 12.7 km.

The aircraft was then above a point a further 35 km from Amsterdam, as shown in the diagram.



Calculate *x*, the angle of climb on the second stage of its journey. Show your method clearly.


**4** EBC is parallel to AD. Triangle ABE is isosceles with AE = AB. Angle BAD is 75°.



Not to scale

Work out the size of angle p.

**5** ABH and FGC are parallel straight lines. Angle GFE = angle GDE = y. Angle DEF =  $90^{\circ}$ .



(a) (i) Write down the size of angle w.

|      |                                | (a)(i) | °[1] |
|------|--------------------------------|--------|------|
| (ii) | Give a reason for your answer. |        |      |
|      |                                |        | [1]  |

**(b)** Work out the size of angle *y*. Show your working clearly.