Q	uestie	on	Answer	Marks	Part Marks and	Guidance
1	(a)	(i)	Angles meeting at a point completing 360° eg	1		0 if not clearly 4 angles
		(ii)	Sum to 360 oe	1		Condone '= 360'
	(b)		130 nfww	4	M3 for $\frac{720-90-90-70}{2}$ 210 Or M2 for $\frac{(their 720)-90-90-70}{2}$ 210 Or M1 for a correct method for internal angles of a hexagon AND If no more than M1 scored then SC1 for 90 + 90 + 70 + 210 or better	Following a correct method for internal angles of a hexagon

2		27	1	M1 for 180 – 90 – 63	
		Angle in a semicircle = 90° Angles (in a) triangle = 180°	1 1		Condone 'Angles from a diameter [on or to the circumference]"

3	(a)	8	3	M2 for $\frac{5 \times 6.4}{4}$ oe Or M1 for 5 ÷ 4 soi or 6.4 ÷ 4 soi	
	(b)	25	1		

4	180	1		
	"triangle" with "angles"	1	Ig	gnore 'isosceles' etc
	"line" with "angles"	1	Ed P th th	For the second and third mark: Provided there is no implication hat they add to anything other han 180 degrees
	interior oe	1	eq 'ir	eg allow 'internal', 'inside' and inner'

5		5.76 to 5.8	3	M2 for $\frac{8.5 \times \sin 36}{\sin 60}$ oe	
				Or M1 for $\frac{x}{\sin 36} = \frac{8.5}{\sin 60}$ oe	

6	61.8 to 62 final answer	4		Correct method with: Rads gives 81.8 Grads gives 84.0
			B1 for angles 137 <u>or</u> 16 seen AND	May be on diagram
			M2 for $\frac{25}{\sin(their16)} \times \sin(their137)$	<i>Their</i> 137 > 90
			Or M1 for any fully numerical attempt at sine rule	ie <u>Any</u> equation with <u>two</u> sin terms and 25

7 (a	$\sqrt{\left(10^2 - \left(3^2 + 3^2\right)\right)}$ oe	M2 A1	M1 for $\sqrt{(3^2 + 3^2)}$ or $\sqrt{(6^2 + 6^2)}$	
	9.05 to 9.08			
(b)	64.8 to 65.6	3	M2 for sin ⁻¹ (9.1 ÷ 10) or better or for cos ⁻¹ (<i>their</i> $\sqrt{18}$ ÷ 10) oe or for tan ⁻¹ (9.1 ÷ <i>their</i> $\sqrt{18}$) oe or better Or M1 for sight of sin $x = \frac{9.1}{10}$ oe etc or for $\frac{\sin x}{9.1} = \frac{\sin 90}{10}$ oe Or SC1 for answer 72.54 rot	For √18 accept 4.242640687 rot For 9.1 accept 9.05538513 rot Any correct trig. equation for the appropriate triangle

8	(a)	106.225rot to at least 1dp	3	Mark best attempt M2 for $\frac{10^2 + 17^2 - 22^2}{2 \times 10 \times 17}$ oe Or M1 for $22^2 = 10^2 + 17^2 - 2 \times 10 \times 17 \times \cos x$ oe	M2 soi by -0.2794117647 rot Or -95/340
	(b)	48.3 to 49	6	M1 for $\frac{1}{2} \times 10 \times 17 \times \sin 106$ oe AND $\frac{106}{360} \times \pi \times 6^2$ oe Or B1 for $\frac{106}{360}$ or $\frac{360}{106}$ oe seen AND M1 for <i>their</i> triangle – <i>their</i> sector soi AND A1 for 81.6 to 82 Or for 33 to 33.3	Dep. on at least 1 previous M mark scored Accept 10.6π or better