Question		on	Answer	Marks	Part Marks and Guidance		
1	(a)		36 + 14.13 to 14.14 or 50.13 to 50.14	3	M2 for $6 \times 6 + \frac{1}{2} \times \pi \times 3^2$ oe Or M1 for $[\frac{1}{2} \times]\pi \times 3^2$	Soi by 36+14.1 or better Soi by 14.1 or better	
	(b)		17.98 to 18.0	3	M2 for √(16232.4 ÷ 50.1) oe Or M1 for 16232.4 ÷ 50.1 soi by 324	Condone use of 16200	

2		21	3	M2 for (5 + 9) × 3 ÷ 2 oe	ie for 5×3 + 4×3÷2 or 9×3 – 4×3÷2
				Or M1 for 5 × 3 or 9 × 3 or 4 × 3 ÷ 2	

3	Correct and clear method shown with commentary.	6	For example: P(square) = $4x$ P(rectangle) = $2x + 2 + 2w$ Therefore $w = x - 1$ A(square) = x^2 A(rectangle) = $(x + 1)(x - 1)$ $= x^2 - 1$ Therefore A(square) is 1 bigger than A(rectangle)
	Finds A(square) = x^2 and A(rectangle) = $x^2 - 1$ so with little/no commentary	5-4	Finds A(square) = x^2 and attempts to find A(rectangle) using $w = x - 1$ with little/no commentary
	Finds $w = x - 1$ oe (may be in words) and A(square) = x^2 with little/no commentary	3-2	Attempts to equalise $4x$ with $2x + 2 + 2w$ oe (maybe in words) with little/no commentary
	Either P(square) = $4x$ or A(square) = x^2 or any correct numerical example of these, with little/no commentary	1-0	No relevant comment

4	11.7 to 13.2 or 1170 to 1330	2	M1 for (4.9 to 5.1) × (2.4 to 2.6) oe	eg rectangle and two triangles with
	cm ² mm ²	1	Indep	correct (± 1 mm) measurements

5	(a)	12.5	3	B1 for SF = $\frac{20}{8}$ oe M1 for <i>their</i> SF × 5	B1 can be awarded in either part
	(b)	6	2	M1 for 15 ÷ <i>their</i> SF	