1.
$$m = \frac{\sqrt{s}}{t}$$
 $s = 3.47$ correct to 3 significant figures $t = 8.132$ correct to 4 significant figures

By considering bounds, work out the value of m to a suitable degree of accuracy. Give a reason for your answer.

working out bounds
$$_{3.465} = 5 < 3.475 (1)$$
 $8.1315 < t < 8.1325$

LB m = $\frac{\sqrt{3.465}}{8.1325} = 0.2288903839$

UB M= $\frac{\sqrt{3.475}}{8.1315} = 0.2292486243$

Highest degree of accuracy where UB and LB round to Same number

Here round to 3dp so M=0.229

Since both the LB and UB rand to 0.229

- 2. Use your calculator to work out $\sqrt{\frac{\sin 25^\circ + \sin 40^\circ}{\cos 25^\circ \cos 40^\circ}}$
 - (a) Write down all the figures on your calculator display.

(on calculator piess then type
$$\frac{\sin 25 + \sin 40}{\cos 25 - \cos 40}$$

- 2.75603957

2.75,603957

2.75603957//

(b) Write your answer to part (a) correct to 2 decimal places.

2.75,603957

(Total for Question

is 3 marks)

3. Work out

$$\sqrt{\frac{2.5 \times \sin 43^{\circ}}{8.2^2 - 50.5}}$$

Give your answer correct to 3 significant figures.

$$\sqrt{\frac{8 \cdot 3_3 - 20 \cdot 2}{5 \cdot 2 \times 210 \cdot 43}} = \sqrt{\frac{16 \cdot 14}{5 \cdot 2 \times 210 \cdot 43}}$$

$$= 0.3161716822... \approx 0.316 (32.5)$$

(Total for Question is 2 marks)

F O 1 L & Lost (2C+5)(2C-9) = 3C²-92+52C-45 N N Noside Foot Outside

90²-420-45

920+620=320(320+2)

0 3x(3x+2)...

4. (a) Use your calculator to work out $\frac{29^2 - 4.6}{\sqrt{35 - 1.9^3}}$

Write down all the figures on your calculator display.

157.668255 (2)

(b) Write your answer to part (a) correct to 4 significant figures.

157.6<mark>68255 Sinc >5</mark>
= 157.7 (4sf)

IS7.7 (1)

>