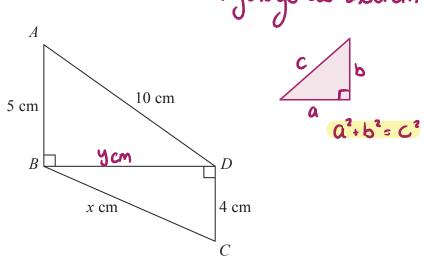

1. *PQR* is a right-angled triangle.



Work out the size of the angle marked *x*. Give your answer correct to 1 decimal place.

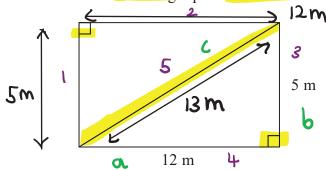
SOMCAHTOA
Sin
$$\alpha = \frac{5}{14}$$
 O
Sin $\alpha = \frac{5}{14}$ O
 $\alpha = \sin^{-1}(\frac{5}{14})$ using calculator
 $\alpha = 20.92483...$
 $\alpha = 20.92483...$

2 marks

2. Triangles ABD and BCD are right-angled triangles.

Work out the value of x. Give your answer correct to 2 decimal places.

For triangle ABD
$$y^{2}+5^{2}=10^{2}$$


$$y^{2}=10^{2}-5^{2}$$

$$y^{2}=75$$

For briangle 13CD

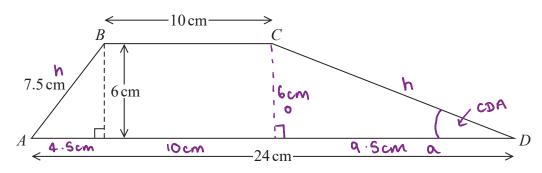
$$y^2 + 4^2 = x^2$$
 $75 + 4^2 = x^2$
 $75 + 16 = x^2$
 $x^2 = 91$
 $x = 191$
 $x = 191$
 $x = 191 = 9.54$
 $x = 191 = 9.54$

This rectangular frame is made from 5 straight pieces of metal.

The weight of the metal is 1.5 kg per metre.

Work out the total weight of the metal in the frame.

Pythagoras: $a^2 + b^2 = C^2$ $12^2 + 5^2 = C^2$ $144 + 25 = C^2$ $169 = C^2$

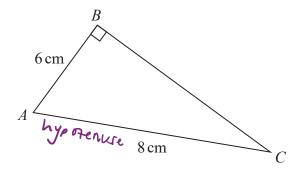

 $C = \sqrt{169} = 13$

Total length: 5+5+12+12+13=47m

Weight: 1 Metre = 1.5 kg.

47 Metres = 70.5 kg 47 metres = 70.5 kg

4. ABCD is a trapezium.


Work out the size of angle CDA.

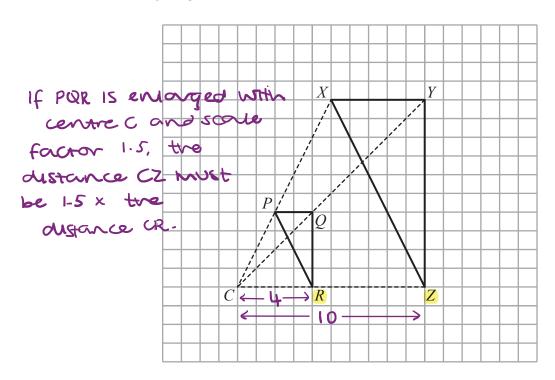
Give your answer correct to 1 decimal place.

$$0^{2} + 0^{2} = 0^{2}$$
 $0^{2} = 0^{2} - 0^{2}$
 $0^{2} = 7.5^{2} - 6^{2}$
 $0^{2} = 20.25$
 $0 = 4.5$

$$24 - 10 - 4.5 = 9.5 \text{ cm}$$

 $\tan x = \frac{6}{9.5}$
 $x = \tan^{-1}(\frac{6}{9.5})$
 $x = 32.2756...$
 $x = 32.3^{\circ}$

5. ABC is a right-angled triangle.



Here is Sarah's method to find the length of *BC*.

$$BC^2 = AB^2 + AC^2$$

= $6^2 + 8^2$
= 100 $a^2 + b^2 = C^2$, where c is the hypotenuse.
 $BC = 10$

(a) What mistake has Sarah made in her method?

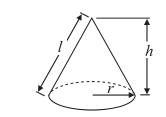
she thought that BC was the hypotenuse when it was actually AC.

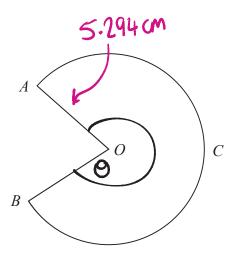
Roy is going to enlarge triangle PQR with centre C and scale factor $1\frac{1}{2}$

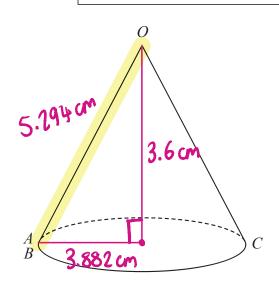
He draws triangle *XYZ*.

(b) Explain why Roy's diagram is **not** correct.

THE	scour	factor	that	ROY USe	d 15	not	1.5.	\cap		
		,		J				U		
									(1)	


(Total for Question is 2 marks)


6. The diagram shows a sector *OACB* of a circle with centre *O*. The point *C* is the midpoint of the arc *AB*.


The diagram also shows a hollow cone with vertex O. The cone is formed by joining OA and OB.

Volume of cone =
$$\frac{1}{3} \pi r^2 h$$

Curved surface area of cone = πrl

The cone has volume 56.8 cm³ and height 3.6 cm.

Calculate the size of angle *AOB* of sector *OACB*. Give your answer correct to 3 significant figures. You must show all your working.

a2+b2= c2

$$V = \frac{1}{3}\pi r^{2}h$$

$$56.8 = \frac{1}{3}\pi r^{2}(3.6)$$

$$\frac{56.8}{1.2\pi} = \frac{1.2\pi r^{2}}{1.2\pi}$$

$$r^{2} = \frac{56.8}{1.2\pi} = \frac{56.8}{1.2$$

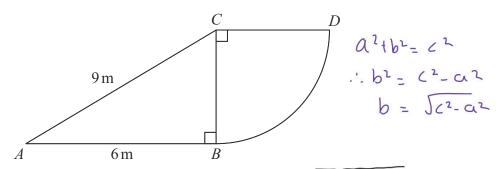
3.882
3.882²+3.6²=
$$C^2$$

 $C^2=28.030$ (3dp) Square
 $C=5.294$ (3dp) V root

Curved SA Cone

= TTrl

Curved SA


cone

= T7×3.882×5.294

= 20.551T (3dp)

Sector Area =
$$\frac{9}{360} \times 77^2$$

 $20.55177 = \frac{9}{360} \times 77(5.294)^2$
 $20.551 \times 360 = 9 \times (5.294)^2$
 $9 = \frac{20.551 \times 360}{(5.294)^2} = 263.978(34p) = 264°(35f)$

7. The diagram shows a right-angled triangle and a quarter circle.

The right-angled triangle ABC has angle $ABC = 90^{\circ}$ The quarter circle has centre C and radius CB.

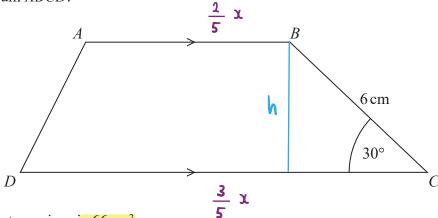
 $(B = \sqrt{9^2 - 6^2})$ = $\sqrt{81 - 36} = \sqrt{81}$ = $3\sqrt{8}$

Work out the area of the quarter circle. Give your answer correct to 3 significant figures. You must show all your working.

Area of Circle =
$$\pi r^2$$

Area of quarter circle = $\frac{1}{4}\pi r^2 = \frac{1}{4}\pi (355)^2$

= 35.3u2...

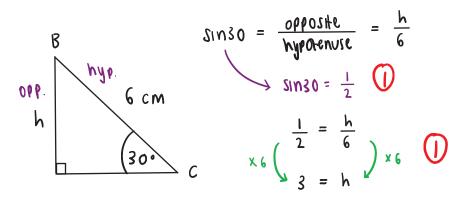

 $\frac{3}{2}$ 35.3m²

35.3 m²

17.6

cm

8. Here is trapezium *ABCD*.


The area of the trapezium is 66 cm²

the length of AB: the length of CD = 2:3

Find the length of AB.

$$=$$
 2 : 3 CD has 3 of these 5 parts.

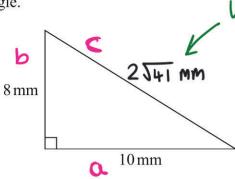
Find height of trapezium:

Area of trapezium:

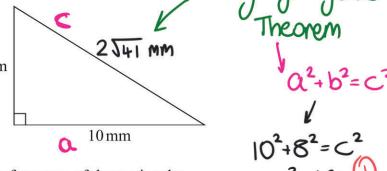
$$A = \left(\frac{\alpha + b}{2}\right) h. \qquad 66 = \left(\frac{\frac{2}{5}x + \frac{3}{5}x}{2}\right) (3)$$

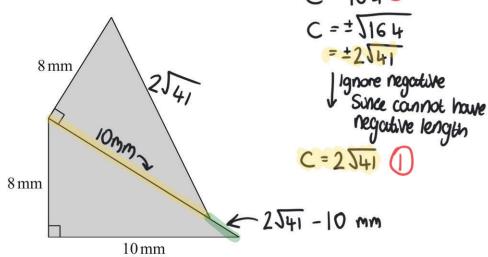
Find length AB:

$$66 = \left(\frac{x}{2}\right)(3)$$


$$22 = \frac{x}{2}$$

$$48 = \frac{2}{5}x \quad \text{(Total for Question is 5 marks)}$$


$$= \frac{2}{5}(44)$$


$$= 17.6 \text{ cm}$$

Here is a right-angled triangle. 9.

The shaded shape below is made from two of these triangles.

Work out the perimeter of the shaded shape.

Give your answer correct to 3 significant figures.

Permeter = 10+8+8+2541+(2541-10) = 41.61249... = 41.6 mm (3sf)