1 Show that $\frac{1}{6x^2 + 7x - 5} \div \frac{1}{4x^2 - 1}$ simplifies to $\frac{ax + b}{cx + d}$ where a, b, c and d are integers.

2 $2 - \frac{x+2}{x-3} - \frac{x-6}{x+3}$ can be written as a single fraction in the form $\frac{ax+b}{x^2-9}$ where *a* and *b* are integers.

Work out the value of a and the value of b.

3 (a) Simplify $\frac{x^2 - 16}{2x^2 - 5x - 12}$

(3)

(b) Make v the subject of the formula $w = \frac{15(t - 2v)}{v}$

(3)

4 (a) Factorise $a^2 - b^2$

(1)

(b) Hence, or otherwise, simplify fully $(x^2 + 4)^2 - (x^2 - 2)^2$

(3)

5 (a) Simplify $m^3 \times m^4$

(1)

(b) Simplify $(5np^3)^3$

.....

(2)

(c) Simplify $\frac{32q^9r^4}{4q^3r}$

(2)

6 Expand and simplify 5(p+3)-2(1-2p)

(2)

- **7** (a) Simplify $\left(\frac{1}{m^2}\right)^0$
 - (b) Simplify $\frac{8(x-4)}{(x-4)^2}$
 - (c) Simplify $(3n^4w^2)^3$

- (1)
- (1)
- (2)