Name:	
Fo	undation Unit 5b topic test

Date:

Time: 45 minutes

Total marks available: 43

Total marks achieved: _____

Questions

Ω1

Q1.								
Her	e is a seque	ence of patterns made with	counters.					
		o o o o n number 1	000	0		0 0	o o ern num	0
(a)	In the spa	ce below, draw pattern nur	nber 4					
(b)	Complete	the table.						(1
		Pattern number	1	2	3	4	5	
		Number of counters	s 5	9	13			
(c)	Find an ex	xpression, in terms of n , for	the number of	of counte	rs in patto	ern numb	er n.	(1
		counters. e as many of his counters a ne number of the pattern he	•		•	•		ters?

(Total for Question is 6 marks)

Pearson Edexcel Level 1/Level 2 GCSE (9 – 1) in Mathematics Foundation Unit 5b topic test \copyright Pearson Education 2015

(2)

Here are some patterns made from triangles.

Pattern number 2

Pattern number 3

Pattern number 4

(a) Complete the table.

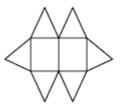
Pattern number	1	2	3	4	5
Number of triangles	2	4	6		

(1)

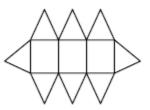
(b) How many triangles are needed for Pattern number 12?

(1

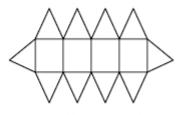
Luke says that Pattern number 40 has 82 triangles.


(c) Luke is wrong.

Explain why.


	 (1)

(Total for Question is 3 marks)


Here are the first three patterns in a sequence. The patterns are made from triangles and rectangles.

pattern number 1

pattern number 2

pattern number 3

1-		11		. 4!		41	•	44		70
(a	1)	HOW	many	[,] triangles	are	tnere	ın	pattern	number	1!

	 	٠.	 	٠.	 			 	 -	 		 								
																		ď)	١

Charlie says

"There are 4 rectangles in pattern number 3 so there will be 8 rectangles in pattern number 6"

(b) Is Charlie right?

Give a reason for your answer.

(1)

(Total for question = 3 marks)

Q4.	
Horo	are the first four

Here are the first	st four terms of a num	ber sequence.		
	6	10	14	18
(a) Write down	the next term in this se	equence.		
(b) Find the 10t	h term in this sequenc	e.		(1)
(c) The number Explain wh		his sequence.		(1)
(d) Write an ex	xpression, in terms of <i>i</i>	<i>n</i> , for the <i>n</i> th term of this	s sequence.	(1)
				(2)
			(10	otal for Question is 5 marks)

Here are the first four terms of a number sequence. 3 7 11 15 (a) Write down the next term of this sequence.	
The 50th term of this number sequence is 199 (b) Write down the 51st term of this sequence.	(1)
The number 372 is not a term of this sequence. (c) Explain why.	(1)
	(1)

Pearson Edexcel Level 1/Level 2 GCSE (9 – 1) in Mathematics Foundation Unit 5b topic test \copyright Pearson Education 2015

Q5.

(Total for Question is 3 marks)

Q6.					
Here are the first fou	ır terms of a number sec	quence.			
4	7	10	13		
(a) (i) What is the	next term in the sequen	ce?			
 (ii) Explain how	you found your answer				
					(2
(b) What is the 8th	n term in the sequence?				
					(1
Alexi says 34 is in th					
• •	1?				
You must give a	a reason for your answe	r.			
					(1
			(Total for	Question is 4 n	narks
Q7.					
Here are the first five	e terms of an arithmetic	sequence.			
2	7	12	17	22	
(a) (i) Find the ne	ext term of this sequence	Э.			
(ii) Explain how you	found your answer.				
(b) Write down an	expression, in terms of	n, for the <i>n</i> th term o	f the sequence		(2
(8) 11110 40111 411	expression, in terms of	,			

(Total for Question is 4 marks)

Q8.		
Here are the first four terms of	an arithmetic sequence.	
6 10 14	18	
(a) Write an expression, in te	rms of n , for the n th term of this	s sequence.
		(2)
The <i>n</i> th term of a different arit		
(b) Is 108 a term of this sequ Show how you get your answer		
, , ,		
		(2)
		(Total for question = 4 marks)

_	\sim
. 1	u

Here are the first six term	ns of a Fibon	nacci sen	llence				
THORO GIVE THO MICE SIX COM	1	1	2	3	5	8	
The rule to continue a Fi				J	J	O	
	•			e sum o	f the two	previous terms.	
(a) Find the 9th term of			1100 15 111	o sam o	i tilo two	previous terms.	
(a) I ma the oth term of	uno ocquene						
							(1)
The first three terms of a	different Fib	onacci s	equence	are			
		а	b	a +	ь		
(b) Show that the 6th te	rm of this se				•		
		94.555					
							(0)
							(2)
Given that the 3rd term i	s 7 and the 6	Sth term i	s 29.				
(c) find the value of a ar			,				
()							
					a =		
					b =		
							(3)
						(Total for que	estion = 6 marks)

Q10.						
(a) Write down the 20th odd num	ber.					
						(1)
The comment of the comment of the control of the co		- :- 40				
The sum of two consecutive odd n (b) Find the smaller of these two						
,						
						(2)
						(2)
Here are the first five terms of an a	arithme	tic seq	uence.			
	5	8	11	14	17	
(c) Is 42 a term of this sequence?	>					
Show how you get your answe	r.					
						(2)
						()
						(Total for question = 5 marks)
						,

Examiner's Report

Q1.

In part (a) most students were able to replicate the pattern. Incorrect responses generally showed the first pattern repeated 5 times, resulting in the additional dot being repeated an extra 4 times. Part (b) was also very successfully answered with most students gaining the mark.

In part (c) the most common incorrect responses did involve some use of the term to term difference of ± 4 but frequently this was seen as $n \pm 4$. The students who had presented the correct nth term expression in part (c) generally went on to use it correctly to answer part (d). Other correct answers often came from a clear continuation of the sequence or a diagram showing pattern number 12. Many students used multiples of values in the table incorrectly, typically deducing that pattern 10 would have 42 dots as pattern 5 had 21.

Q2.

Q3.

No Examiner's Report available for this question

Q4.

Parts (a) and (b) were very well answered with the vast majority of candidates able to identify the next and 10th term in the linear sequence. The most common misconception in part (b) was to double the 5th term 22 from part (a) to give 44 rather than 42. Three quarters of the candidates were able to gain at least one mark for parts (c) and (d) and usually did so with a correct explanation in part (c) Answers referring to 101 being odd and/or the terms in the sequence being even were most common with some excellent answers with statements well justified using numerical examples. A common error was to assume that the sequence was multiples of 4 as it had a term-to-term difference of 4.

In part (d) many candidates correctly identified the need for 4n in the term, but few were able to complete it successfully. Others reversed the 2 and 4 in the rule to give 2n+4 and many gave the term-to-term rule of n+4 instead.

Q5.

Part (a) was answered usually correct.

Part (b) was well answered, very few blank or incorrect responses were seen.

In Part (c), whilst only a minimal reason was required, many lacked clarity. Common incorrect responses seen were "it goes up in 4s" "not in the four times table" "it's not in the pattern". Correct answers usually referred to the sequence consisting of odd numbers or the fact that 372 was even, or both points and some candidates correctly used the nth term. However, a few candidates did confuse the terms odd and even.

Q6.

98% of candidates scored at least 1 mark on part (a) with nearly 90% scoring both available with an explanation of how the next term could be found. In order to score the second mark it was important for candidates to not only mention the term to term difference of 3 but also note that the sequence was increasing and so 3 needed to be added. Some candidates gave the correct nth term rule 3n + 1 instead.

75% of candidates gave the correct 8th term of the sequence in part (b). The most common errors involved giving the 9th term 28 or 24 from 8 × 3. 50% of candidates gave a correct explanation in part (c) with incorrect answers referring only to multiples of 3 or the alternating odd and even terms of the sequence.

Q7.

Part (a)(i) of this question was well answered with very few incorrect responses seen. Some candidates wrote additional terms in the sequence 27, 32, etc but provided they were correct this did not stop them achieving B1, of course a few did offer additional incorrect answers and achieved B0.

Part (a)(ii) was well attempted by candidates with candidates correctly offering +5, add 5, increases by 5, however, many candidates offered ambiguous answers such as stating the difference without indicating whether it should be added or subtracted, hence B0. Likewise others referred to a gap of 5. Some of the more able candidates quoted 5n-3 which was awarded B1. A common incorrect response was to comment on the units digit alternating between 2 and 7

Part (b) of this question was also well attempted by candidates but frequently the weaker candidates worked out further terms or wrote n + 5 and gained no marks. Some correctly wrote 5n realising a link to the five times table but only achieved B1. Common incorrect responses included 2n and 3n.

Q8.

No Examiner's Report available for this question

Q9.

No Examiner's Report available for this question

Q10.

No Examiner's Report available for this question

Mark Scheme

Q1.

PAPER: 1	PAPER: 1MA0_2F						
Question	Working	Answer	Mark	Notes			
(a)		••••••	1	B1 cao			
(b)		17, 21	1	B1 for 17, 21 cao			
(c)		4n + 1	2	B2 for $4n + 1$ oe (B1 for $4n + k$, $k \ne 1$, or k is absent or $n = 4n + 1$)			
(d)		12	2	M1 for (50 – 1) ÷ 4 or evidence of using their formula from part (c) if in the form an+b or repeated addition of 4 (at least 3) ft table in part (b) or 49 seen A1 cao			

Q2.

	Working	Answer	Mark	Notes
(a	1)	8, 10	1	B1 cao
(b))	24	1	B1 cao
(0	(*)	reason	1	B1 for a valid reason that demonstrates the understanding that the number of triangles is twice the pattern number

Q3.

Paper 1MA1: 1F				
Question	Working	Answer	Notes	
(a)		18	M1 Evidence of interpretation of pattern, eg. further diagrams drawn or numerical sequence for numbers of triangles 6, 8, 10 etc A1	- 1
(b)		No with reason	C1 No with reason eg. No , pattern number 6 will have 7 squares; always one more square than pattern number	n

Q4.

Question	Working	Answer	Mark	Notes
(a)		22	1	B1 cao
(b)		42	1	B1 cao
(c)		Reason given	1	B1 for correct reason – accept as sufficient: 101 is odd Terms of the sequence are even or end in 0, 2, 4, 6, 8 Shows terms 98 and 102 or either 98 or 102 alone with evidence of term to term difference of 4
(d)		4n + 2	2	
				B2 for $4n + 2$ oe (B1 for a linear expression in $4n$ e.g. $4n + a$ (a \neq 2) or $n = 4n+2$) (B0 for $n = 4n$ or $n + 4$)

Q5.

PAPE	PAPER: 1MA0_1F						
Que	stion	Working	Answer	Mark	Notes		
	(a)		19	1	B1 cao		
	(b)		203	1	B1cao		
	(c)		Explanation	1	B1 for any correct reason, e.g. terms are all odd but 372 is even or use of n th term $4n - 1$ or not 1 less than a multiple of 4		

Q6.

Question	Working	Answer	Mark	Notes
(a)(i)		16	1	B1 cao
(ii)		Reason	1	B1 add 3 or 3 ×5+1or 3n+1
(b)		25	1	B1 cao
(c)		Yes with reason	1	B1 for "Yes" and "keep adding 3" oe 3×11+1 or 11 th term or multiple of 3 plus 1

Q7.

Que	estion	Working	Answer	Mark	Notes
	(a)(i)		27	2	B1 cao
	(ii)		Add 5		B1 for 'add 5' oe
	(b)		5n – 3	2	B2 for $5n - 3$ (oe, including unsimplified) (B1 for $5n + k$, $k \ne -3$ or k is absent, or $n = 5n - 3$)

Q8.

Paper 11	MA1: 2F		
Question	Working	Answer	Notes
(a)		4n+2	M1 start to deduce nth term from information given eg. $4n + k$ where $k \neq 2$
			A1 cao
(b)		No (supported)	M1 start to method that could lead to a deduction eg. uses inverse operations C1 for a convincing argument eg. 34 is 107 so NO; (108 – 5) ÷ 3 is not an integer

Q9.

Paper 1MA1: 3F				
Question	Working	Answer	Notes	
(a)	8, 13, 21,	34	B1	cao
(b)	a,b,a+b,a+2b,2a+3b	Shown	M1 C1	Method to show by adding pairs of successive terms $a + 2b,2a + 3b$ shown
(c)	3a + 5b = 29 a + b = 7 3a + 3b = 21 b = 4, a = 3	a = 3 $b = 4$	P1 P1 A1	Process to set up two equations Process to solve equations

Q10.

Question	Working	Answer	Mark	AO	Notes
(a)		39	В	1.3a	B1 cao
(b)		23	P	3.1a	P1 for a correct process to start to solve the problem, e.g. 48 ÷ 2 or 23 + 25
			A	1.3a	A1
(c)		No with justification	Р	2.2	P1 for a start to the process, e.g. sight of $3n + 2$ or a correct continuation of sequence with an extra 3 terms
			С	2.4a	C1 for 'No' with full justification, e.g. if $3n + 2 = 42$ then $n = \frac{40}{3}$ which is not an integer value or complete sequence up to 41, 44 with statement that 42 is not in the sequence