

Topic Test 1 Mark Scheme

Coordinates and linear graphs - Higher

Q	Answer	Mark	Comments
1	y = -3x - 6	B1	
2	В	B1	
3(a)	(5, 6.5)	B2	B1 (<i>x</i> , 6.5) or (5, <i>y</i>)
3(b)	$\frac{9-4}{10(-0)}$	M1	
	$\frac{1}{2}$	A1	ое
	$\frac{-1}{\text{their }\frac{1}{2}}$ or -2	M1	ое
	Substitutes their (5, 6.5) into $y = \text{their} -2 \times x + c$ and finds c	M1	
3(c)			ое

y = -2x + 16.5	A1ft	ft their (5, 6.5) and their $\frac{1}{2}$
		SC2 $y = \frac{1}{2}x + 4$ oe

Q	Answer	Mark	Comments
4	(Gradient of $AB =$) $\frac{8}{2}$ or 4	B1	
	Substitutes (6, 0) into y = their 4 × x + c and finds $cor c = -24$	M1	
	y = 4x - 24	A1ft	oe ft their 4 SC2 $y = -\frac{1}{4}x + \frac{3}{2}$ oe
	2		
5	(Gradient of $AB =) -\frac{5}{5}$	B1	oe
	(Gradient of <i>CD</i> =) $\frac{5}{3}$	B1	oe
	their $-\frac{3}{5}$ × their $\frac{5}{3}$ = -1 and Yes	B1ft	oe ft a correct decision based on whether the product of their gradients is –1

Q	Answer	Mark	Comments				
6(a)	Gradient of $AD = \frac{22}{-35}$	M1	ое				
	Gradient of $BC = \frac{13}{4-2}$	M1	oe				
	Both gradients = 2 and opposite sides parallel	A1	oe				
6(b)	Gradient of $AB = \frac{-32}{25}$ or $-\frac{1}{7}$						
	or	M1	oe				
	Gradient of $DC = \frac{2-1}{-3-4}$ or $-\frac{1}{7}$						
	Product of any two adjacent lines, with at least one correct shown to be not –1.	A1ft	ft their gradients if both Ms awarded in (a) and M awarded in (b) and one of the gradients is 2 or $-\frac{1}{7}$				