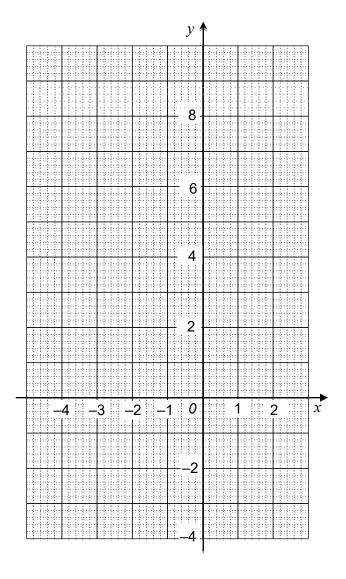


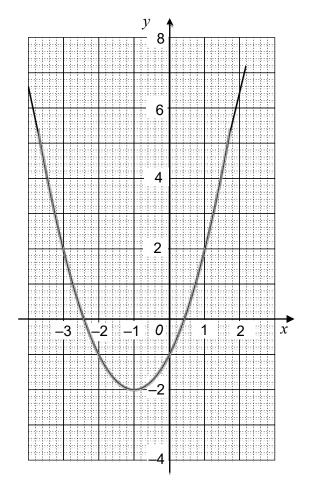
Topic Test 1 (20 minutes)

Quadratic graphs - Foundation


1 (a) Complete this table of values for $y = x^2 + 3x - 1$ for values of x from -4 to 2

[1 mark]

x	-4	-3	-2	- 1	0	1	2
y	3	-1		-3			9

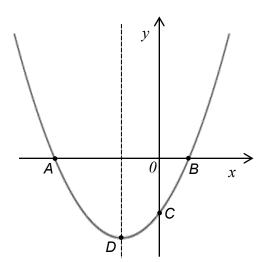

1 (b) On the grid draw the graph of $y = x^2 + 3x - 1$ for values of x from -4 to 2

[2 marks]

1(c)	Use the graph to estimate the value of y when $x = -0.5$	[1 mark]	
1(d)	Answer Use the graph to estimate the solutions to $x^2 + 3x - 1 = 0$	[2 marks]	
	Answer		

2 Here is the graph of $y = x^2 + 2x - 1$ for values of x from -3 to 2

From the graph write down the coordinates of the following


[4 marks]

The *y*-intercept (______, _____

The turning point (______ , _____)

The negative root of $x^2 + 2x - 1 = 0$ (_______, _____)

3 Here is a sketch of the graph y = (x - 1)(x + 4)

2	۵۱	\\/rita	down	tha	acardinatas	۰ŧ	tha	naint	Λ
ગ (a)	vviile	down	uie	coordinates	ΟI	uie	politic	А.

[1 mark]

3 (b) Write down the coordinates of the point B.

[1 mark]

3 (c) Write down the coordinates of the point *C*.

[1 mark]

3 (d) Write down the equation of the line of symmetry of the graph.

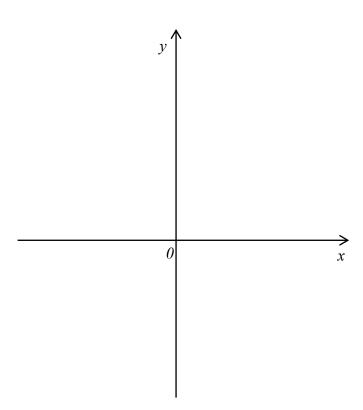
[1 mark]

3 (e) Work out the coordinates of the point D.

[1 mark]

Answer _____

4 (a) Solve the quadratic equation $x^2 + 6x + 9 = 0$


[2 marks]

Answer _____

4 (b) Sketch the graph of $y = x^2 + 6x + 9$ on the axes.

Clearly mark the values of the points where the graph crosses the axes.

[3 marks]

