M1.

(a) $\frac{1}{6}$

 $\frac{5}{6}$

On every pair of branches

oe

Allow 0.16... or 0.17

Allow 0.83...

B1

(b)
$$\frac{1}{6} \times \frac{1}{6}$$

or
$$\frac{1}{6}$$
 × their $\frac{1}{6}$

oe

Allow 0.16... or 0.17

ft their $\frac{1}{6}$ provided [0, 1]

M1

1 36

oe

Allow 0.027...

Allow 0.03 if working shown

Ignore fw if attempting to convert

 $\frac{1}{36}$ to a decimal, otherwise, do not ignore fw,

$$eg \frac{1}{36} \times 2$$

A1ft

[3]

M2.(a)
$$3 + 4 = 7$$
 or $3 : 4 = total 7$

3 and 4 do not have any common factors (apart from 1)

oe

B1

(b) $\frac{3}{7}$ and $\frac{4}{7}$ seen or 2 equivalent fractions

M1

$$\frac{3}{7} \times \frac{3}{7}$$
 or $\frac{4}{7} \times \frac{4}{7}$ or $\frac{3}{7} \times \frac{2}{6}$ or $\frac{4}{7} \times \frac{3}{6}$

Maybe on tree diagram with appropriate branches shown and probability calculation shown for at least one pair of branches

M1dep

$$\frac{3}{7} \times \frac{3}{7} + \frac{4}{7} \times \frac{4}{7}$$

$$1 - 2 \times \frac{4}{7} \times \frac{3}{7}$$

M1dep

$$\frac{18}{\text{ft}} \frac{18}{42} \left(= \frac{3}{7} \right)$$
 if without replacement calculated
$$\text{SC2} \frac{18}{49} \text{ from } \frac{3}{7} \times \frac{2}{7} + \frac{4}{7} \times \frac{3}{7}$$

A1ft

[5]

M3.Lists outcomes

6, 2

Even dice
$$1 - \frac{2}{3}$$
or
odd dice $1 - \frac{1}{3}$
or
odd dice $2 - \frac{1}{2}$
or
even dice $2 - \frac{1}{2}$

M1

One of:

A (both even) has 2 outcomes

B (both odd) has 1 outcome

C (one odd one even) has 3 outcomes

One of:

$$P(both \ even) = \frac{1}{2} \times \frac{2}{3} = \frac{1}{3} \text{ or } \frac{2}{6}$$

$$P(both \ odd) = \frac{1}{2} \times \frac{1}{3} = \frac{1}{6}$$

$$P(odd \ and \ even \ any \ order) = \frac{1}{2} \times \frac{2}{3} + \frac{1}{2} \times \frac{1}{3} = \frac{1}{2} \text{ or } \frac{3}{6}$$

$$or \ 1 - \frac{2}{6} - \frac{1}{6}$$

M1 dep

B, A, C

All three shown and correct and BAC

A1

[3]

M4.All correct oe

ie each head =
$$\frac{2}{5}$$
 and each tail = $\frac{3}{5}$

B2 all pairs of probabilities add to 1 and at least one pair correct

B1 two correct probabilities in correct positions

B3 [3]

M5. (a)
$$\sqrt{0.36} = 0.6$$
 or $0.6 \times 0.6 (= 0.36)$

B1

(b)
$$(1 - 0.6) \times (1 - 0.6)$$
 or 0.4×0.4
oe

oe

oe

M1

0.16

A1

(c)
$$1-0.36$$

oe $0.6 \times (1-0.6) \times 2 + (1-0.6) \times (1-0.6)$
or $0.6 \times (1-0.6) \times 2 + their \ 0.16$ or $0.4 + 0.6 \times 0.4$

M1

0.64

A1

[5]

M6. (a) 2 + 1 = 3 or clear connection between 1, 2 and 3

oe eg $\frac{2}{3} + \frac{1}{3} = 1$ or clear connection between $\frac{1}{3}$, $\frac{2}{3}$ and

B1

(b) Each probability male $\frac{2}{3}$ oe [0.66, 0.67]

B1

Each probability female $\frac{1}{3}$

oe 0.33 or better

SC1 probabilities wrong but all pairs add to 1

В1

(c)
$$\frac{1}{3} \times \frac{1}{3}$$
 or $\frac{2}{3} \times \frac{2}{3}$ or $\frac{2}{3} \times \frac{1}{3}$ or $\frac{1}{9}$ or $\frac{2}{9}$ or $\frac{4}{9}$

М1

Two males = $\frac{4}{9}$ or

Two females = $\frac{1}{9}$ or

MF or FM = $\frac{2}{9}$

Probabilities must be linked with genders Check on tree if not labelled to ensure correct outcomes being used

M1

One of each =
$$2 \times \frac{2}{9} = \frac{4}{9}$$
 or both same = $\frac{4}{9} + \frac{1}{9} = \frac{5}{9}$

Must show how either $\frac{4}{9}$ or $\frac{5}{9}$ is achieved

A1

Two of same (gender more likely)

First A1 must be awarded and decision for 4 marks but if both answers given, both must be correct

A1