M1.

Full evaluation referencing that the steps are right but the order is wrong, giving the correct order

oe

B1 for a partial explanation eg references incorrect order without being specific

B2

[2]

M2

$$\frac{1}{125^{\frac{2}{3}}}$$
 or 5^{-2} or $(\sqrt[3]{125})^{-2}$

or
$$\sqrt[3]{125} = 5$$

M1

$$\frac{1}{(\sqrt[3]{125})^2}$$
 or $\frac{1}{(\sqrt[3]{125})^2}$ or $\left(\frac{1}{(\sqrt[3]{125})^2}\right)^2$

or
$$\sqrt[3]{\left(\frac{1}{125}\right)^2}$$
 or $125^{\frac{2}{3}} = 25$

or
$$\frac{1}{5^2}$$
 or $\left(\frac{1}{5}\right)^2$ or $25^{\text{--}1}$ or 0.2^2

M1dep

1 25

oe 0.04

A1

[3]

 $M3.101.4^{\frac{1}{2}}$ estimated as 10

condone - 10

 $(6.43^{\circ} =) 1$

B1

 $7.99^{\frac{2}{3}}$ estimated as 4

B1

14

condone -6 if -10 used ft fully correct evaluation with B2 scored

B1ft

[4]

M4.

(a) x^7

B1
$$\sqrt{x^{14}}$$
 or $(x^{14})^{\frac{1}{2}}$ or $\sqrt{x^{5+9}}$ or $(x^{5+9})^{\frac{1}{2}}$ or $x^{\frac{14}{2}}$ or $x^{\frac{5+9}{2}}$ or $x^{\frac{5}{2}} \times x^{\frac{9}{2}}$ or $x^{2.5} \times x^{4.5}$

B2

(b) 0.2 or
$$\frac{1}{5}$$
 or 5^{-1}

B1 $125^{-\frac{1}{3}}$ or $-\sqrt[3]{125}$

or $\left(\frac{1}{125}\right)^{\frac{1}{3}}$ or $\sqrt[3]{\frac{1}{125}}$

or $\frac{1}{125^{\frac{1}{3}}}$ or $\frac{1}{\sqrt[3]{125}}$

or $\left(\frac{1}{5^3}\right)^{\frac{1}{3}}$ or $\sqrt[3]{\frac{1}{5^3}}$

or $\frac{1^{\frac{1}{3}}}{5}$ or $\sqrt[3]{\frac{1}{5}}$

or
$$\frac{1}{y^3} = 125$$
 or $y^3 = \frac{1}{125}$ or $\frac{1}{y} = 5$

or
$$\frac{1}{v} = \sqrt[3]{125}$$
 or $\frac{1}{v} = 125^{\frac{1}{3}}$

B2 [4]

$$\frac{1}{8^{\frac{2}{3}}}$$
 or $\frac{1}{\sqrt[3]{8^2}}$ or $\frac{1}{(\sqrt[3]{8})^2}$ or $\sqrt[3]{8} = 2$

or
$$\frac{1}{2^2}$$
 or 2^{-2} or 4^{-1} or $2^2 = 4$

M1

$$\frac{1}{4}$$
 or 0.25

A1 [2]

M6.m = 5

B1

$$(3^2)^p = 3^m \text{ or } 3^{2p} = 3^m$$

or
$$(3^2)^p = 3^{\text{their 5}}$$
 or $3^{2p} = 3^{\text{their 5}}$

or
$$3^5 = 243$$
 or $3^{their 5} = \left(\sqrt{9}\right)^{their 5}$

or 3their 5 correctly evaluated

$$9^p = 9^{\frac{m}{2}} \text{ or } 9^p = 3^{\text{their 5}}$$

or
$$9^p = 243$$
 or $3^{2p} = 243$ oe

M1

$$2p = m$$
 or $2p =$ their 5 or $9^p = 9^{\frac{\text{their 5}}{2}}$ oe

M1

p = 2.5

oe

ft for values of m and p where $p = \frac{m}{2}$

A1ft

[4]

M7.

$$x^{-\frac{2}{3}}$$
 or $a = -\frac{2}{3}$

B2
$$(x^{\frac{-1}{3}})^2$$
 or $(x^2)^{\frac{-1}{3}}$ or $(x^{\frac{2}{3}})^{-1}$ or $(x^{-2})^{\frac{1}{3}}$ or $(x^{\frac{1}{3}})^{-2}$ or $\frac{1}{x^{\frac{2}{3}}}$ or $-\frac{2}{3}$

B1
$$(\sqrt[3]{x})^2$$
 or $(\sqrt[3]{x^2})^{-1}$ or $(\frac{1}{x^2})^{\frac{1}{3}}$ or $(\frac{1}{\sqrt[3]{x}})^2$ or base x w

or base x with any negative index.

В3

[3]

M8.Correct evaluation of a relevant power of 2 or 16

eg
$$16^{\frac{1}{2}} = (\pm) 4$$
 or $16^2 = 256$ or $2^4 = 16$ or

or 4c = d

$$16^{\frac{1}{4}} = (\pm)2$$
 or $16^{\circ} = 16$ or $16^{\circ} = 1$

M1

One correct pair of answers

A correct answer is such that d = 4c

A1

A second correct pair of answers

eg
$$c = 0$$
, $d = 0$
 $c = 1$, $d = 4$ or $c = -1$, $d = -4$
 $c = 2$, $d = 8$ or $c = \frac{1}{8}$, $d = \frac{1}{2}$ etc ...

A1 [3]

M9.
$$(\sqrt[3]{64})^2$$
 or $(\sqrt[3]{64^2})$ or 4^2 or $\sqrt[3]{4096}$

M1

16

A1

[2]

M10. (a)
$$\frac{1}{27}$$

B2 for 27 or
$$\frac{1}{3}$$
 or $\frac{1}{729}$ or 27^{-1}

B1 for 3 or 729 or $9^{\frac{1}{2}}$ or -27

В3

(b)
$$2^{3m} \left(= 2^{m^2}\right) \text{ or } \left(2^3\right)^m \left(= 2^{m^2}\right)$$

M1

$$m^2 = 3m$$
 or $m^2 - 3m = 0$ or $m(m-3) = 0$
or $(m =) 0$ or $(m =) 3$

oe

M1 dep

0 **and** 3

A1

[6]

M11.
$$\sqrt[3]{27} (= 3)$$
 or 27^2 or 729

Do not allow $\sqrt[3]{27} = 9$

M1

9

A1

[2]

M12. (a) Sight of
$$\sqrt{4} = 2$$
 followed by 2^3 or 4^3 followed by $\sqrt{64}$

B1 for partial solution but incomplete

eg for $\sqrt{4} = 2$ seen or 64 seen

B2

(b)
$$(4^y =) (4^{1.5})^6$$
 or $(2^2)^y = (2^3)^6$
Allow 1.5 × 6 or 2 × y = 3 × 6

M1

9

Allow $\frac{18}{2}$ and 4°

A1

[4]

M13.B1 for
$$64^{\frac{1}{3}} = 4$$

B1 for
$$4^{\frac{3}{2}} = 8$$

B1 for
$$27^{\frac{2}{3}} = 9$$

B3 [3]

M14.
$$\frac{4}{3}\pi x^3 (=) \frac{2}{3}\pi y^3$$

oe e.g. 1
$$\frac{4}{3}\pi \times x^3 = \frac{1}{2} \times \frac{4}{3}\pi \times y^3$$

e.g. 2 $y^3 = 2x^3$

M1

$$(\frac{y^3}{x^3} =)\frac{\frac{4}{3}\pi}{\frac{2}{3}\pi}$$
 or $y = \sqrt[3]{2}x$

oe e.g.
$$\frac{y^3}{x^3} = 2$$

M1dep

 $2^{\frac{1}{3}}$

$$\sqrt[3]{2}$$
 scores M2 A0

A1

[3]

M15.
$$9^{\frac{1}{2}} = 3$$
 or $(-7)^{\circ} = 1$

$$\left(\frac{1}{8}\right)^{-\frac{1}{3}} = 8^{\frac{1}{3}}$$
 or $\sqrt[3]{\frac{1}{8}}$ or $\frac{1}{2}$ or $\sqrt[3]{8}$ oe $-\frac{1}{2}$ implies M1

or
$$\left(\frac{1}{2}\right)^{-1}$$
 or $\left(\frac{1}{8}\right)^{\frac{1}{3}} = \frac{1}{2}$ or $\sqrt[3]{8} = \frac{1}{2}$

M1

$$\left(\frac{1}{8}\right)^{-\frac{1}{3}} = 2$$

A1

All three numbers correctly evaluated and in correct order

$$\left(\frac{1}{8}\right)^{\!\!-\!\!\frac{1}{3}}$$

$$9^{\frac{1}{2}}$$

A1

[4]