M1.

Alternative method 1

$$y = 2x \text{ or } (x, 2x)$$

 oe
M1
 $x^2 + (2x)^2 = 2645$
 oe
M1
 $x^2 = 2645 \div 5 \text{ or } x^2 = 529 \text{ or } x^2$

(23, 46)

A1

Alternative method 2

$$\frac{1}{2}y = x$$
 or $\left(\frac{1}{2}y, y\right)$

oe

M1

$$\left(\frac{1}{2}y\right)^2 + y^2 = 2645$$

oe

M1

$$y^2 = 2645 \div \frac{5}{4}$$
 or $y^2 = 2116$ or

[4]

	<i>y</i> = 46	M1	
	(23, 46)	A1	
M2.			
IVIZ.	Alternative method 1 $x^2 - 6x - 20 = 4 - x$		M1
	$x^2 - 5x - 24 (= 0)$ ft one error in collection of terms with all terms correctly collected on one side		M1
	(x-8)(x+3)(=0) or $(x+a)(x+b)(=0)where ab = \pm their 24 or a + b = \pm their 5ft their quadraticor quadratic formula (allow one error)$		M1
	x = 8 and $y = -4$ or $x = -3$ and $y = 7$		A1
	x = 8 and $y = -4$ and $x = -3$ and $y = 7SC2 for both (8, -4) and (-3, 7) by trial and improvementSC1 for either (8, -4) or (-3, 7) by trial and improvement$		A1

Alternative method 2

 $y = (4 - y)^{2} - 6 (4 - y) - 20$ or $y = 16 - 8y + y^{2} - 24 + 6y - 20$ or $y = y^{2} - 2y - 28$ allow one error in rearrangement of y = 4 - xM1

$$y^2 - 3y - 28 (= 0)$$

ft one error in expansion and collection of terms with all
terms correctly collected on one side

M1

M1

A1

(y - 7) (y + 4) (= 0) or (y + a) (y + b) (= 0)where $ab = \pm$ their 28 or $a + b = \pm$ their 3 ft their quadratic or quadratic formula (allow one error)

y = -4 and x = 8 or y = 7 and x = -3

y = -4 and x = 8 and y = 7 and x = -3SC2 for both (8, -4) and (-3, 7) by trial and improvement SC1 for either (8, -4) or (-3, 7) by trial and improvement

A1

Additional Guidance

Substituting x = y - 4 into quadratic is two errors in rearrangement of y = 4 - x

M0

Substituting x = y - 4 into quadratic followed by collection of terms with all terms correctly collected on one side $y^2 - 15y + 20$ (= 0) (allow one error)

M0M1

Substituting x = y - 4 into quadratic

followed by $y^2 - 15y + 20 (= 0)$

followed by attempt to factorise quadratic where $ab = \pm$ their 20 or $a + b = \pm$ their 15 M0M1M1

[5]

A1

МЗ.

Alternative method 1 $2x^2 + 7x - 1 = 4x + 1$ Eliminates a variable	M1
$2x^2 + 3x - 2 = 0$	
or $2x^2 + 3x = 2$ Correctly reduces to three terms	M1dep
(2x - 1)(x + 2) (= 0) If quadratic formula used here it must be fully correct	M1dep
$x = \frac{1}{2}, x = -2$	
or $x = \frac{1}{2}, y = 3$	
or $x = -2$, $y = -7$ SC3 if from T & I and 2^{nd} answer not obtained	A1
$x = \frac{1}{2}, y = 3$	
and $x = -2, y = -7$	

Alternative method 2 $y = 2\left(\frac{y-1}{4}\right)^2 + 7\left(\frac{y-1}{4}\right) - 1$

[5]

		Eliminates a variable	M1
	$y^2 + 4y - 21 = 0$		
	or $y^2 + 4y = 21$	Correctly reduces to three terms	M1dep
	(y - 3)(y + 7) (=	0) If quadratic formula used here it must be fully correct	M1dep
	y = 3, y = -7		
	or $y = 3, x = \frac{1}{2}$		
	or $y = -7, x = -$	2 SC3 if from T & I and 2 nd answer not obtained	A1
	$y = 3, x = \frac{1}{2}$		
	and $y = -7, x =$	- 2	A1
M4.	Alternative met	hod 1	
	y = -3 - 4x		B1
	$x^2 + 2x + 5 = $ the	ir -3 - 4 <i>x</i>	M1
	$x^2 + 6x + 8 = 0$	ft their $-3 - 4x$	
			A1ft
	(x + 4)(x + 2) (=	0) Correct method to solve their quadratic equation	M1
	<i>x</i> = -4, -2	ft their quadratic equation	

A1

Alternative method 2

$x = \frac{(\text{their } \frac{-3-y}{4})^2 + 2(\frac{-3-y}{4})}{4}$	B1
- 3 - 11 3 - 11	

$$y = \frac{(\text{their } \frac{-3-y}{4})^2 + 2(\frac{-3-y}{4})}{4} + 5$$
 M1

$y^2 - 18y + 65 = 0$	
ft their $\frac{-3-y}{4}$	
oe may have common denominator 16	A1ft

(y - 5)(y - 13) (=	= 0)	
	Correct method to solve their quadratic equation	
		M1
<i>y</i> = 13, 5		
	ft their quadratic equation	

$$x = -4, -2$$

SC2 Both pairs of correct values without valid working

Alternative method 3

$4x + x^2 + 2x + 5 = -3$	
oe	B1
$x^2 + 6x + 5 = -3$	M1
$x^2 + 6x + 8 = 0$	A1
(x + 4)(x + 2) (= 0)	

	Correct method to solve their quadratic equation	M1
<i>x</i> = -4, -2	ft their quadratic equation	A1ft
<i>y</i> = 13, 5	SC2 Both pairs of correct values with no valid working	A1
Alternative me	thod 4	
4x + y = -3 and	l	
$y - x^2 - 2x = 5$		
or		
4x + y = -3 and	I	
$-2x + y = x^2 + 5$	oe the equations must be used as simultaneous equations	B1
$4x + x^{2} + 2x = -$ or $6x = -3 - x^{2} - 5$	$x^2 + 6x = -8$	
	oe	M1

$x^2 + 6x + 8 = 0$	
	A1

(x + 4)(x + 2) (= 0)	
Correct method to solve their quadratic equation	
	M1

x = -4, -2ft their quadratic equation A1ft

y = 13, 5

SC2 Both pairs of correct values with no valid working

A1

[6]

$$M5.(x+3)(x-5) = 4x + 1$$
oe
M1
$$x^{2} + 3x - 5x - 15$$
or $x^{2} - 2x - 15$
M1
$$x^{2} - 6x - 16 = 0$$
oe
A1
$$(x+2)(x-8)$$
or $x = -2$
or $x = 8$
ft their quadratic
$$(x+a)(x+b) \text{ where } ab = \pm 16 \text{ or } a+b = -6$$
Quadratic formula: Allow one error
M1
$$x = -2 \text{ and } x = 8$$
or $x = -2 \text{ and } y = -7$
or $x = 8 \text{ and } y = 33$
A1

x = -2 and y = -7

and x = 8 and y = 33

[6]

B1

M1

M6.
$$y = 2 + x$$

$$x = y - 2$$

$$2x^{2} + 5x + 1 = \text{their} (2 + x)$$

oe

$$y = 2(y - 2)^{2} + 5(y - 2) + 1$$

$$2y^{2} - 8y + 8 + 5y - y - 10 + 1 = 0$$

$$2x^2 + 4x - 1 = 0$$

 $2y^2 - 4y - 1 = 0$ M1dep

$$\frac{-4 \pm \sqrt{4^2 - (4 \times 2 \times -1)}}{2 \times 2}$$
or
$$\frac{-4 \pm \sqrt{24}}{4}$$

$$\frac{-4 \pm \sqrt{(-4)^2 - (4 \times 2 \times -1)}}{2 \times 2}$$
or
$$\frac{4 \pm \sqrt{24}}{4}$$

M1

$$x = -2.2(...)$$
 and $x = 0.2(...)$
or $x = -2.2(...)$ and $y = -0.2(...)$
or $x = 0.2(...)$ and $y = 2.2(...)$
 $y = 2.2(...)$ and $y = -0.2(...)$
or $y = 2.2(...)$ and $x = 0.2(...)$

or
$$y = -0.2(...)$$
 and $x = -2.2(...)$

$$x = -2.2$$
 and $y = -0.2$

and
$$x = 0.2$$
 and $y = 2.2$
 $y = 2.2$ and $x = 0.2$
and $y = -0.2$ and $x = -2.2$

Additional Guidance

BEWARE, roots of $2x^2 + 5x + 1 = 0$ are -0.22 and -2.28

Correctly substituting their values from their quadratic scores M1, e.g. $2x^2 + 5x + 1 = 0$

A0A0

$$\frac{-5\pm\sqrt{5^2-(4\times2\times1)}}{2\times2}$$
 scores MOMOM1

All four solutions are required to score full marks

M7. (a) $(3x + 1)^2 = 9x^2 + 3x + 3x + 1$

(b)
$$9x^2 + 3x + 3x + 1 = 4x^2 - x + 7$$
 or $9x^2 + 6x + 1 = 4x^2 - x + 7$
oe
B1

$$5x^2 + 7x - 6 = 0$$

ft their expansion of $(3x + 1)^2$ with all terms
correctlycollected on one side of the equation
M1

(5x - 3)(x + 2) (= 0) or (5x + a)(x + b) (= 0) $ab = \pm 6$ or $5b + a = \pm 7$ ft their quadratic A1

A1

[6]

B1

[6]

or quadratic formula allowing one substitution error

$$x = 0.6 \text{ and } x = -2 \text{ or } x = 0.6 \text{ and } y = 2.8$$

$$oe$$
A1
$$y = 2.8 \text{ and } y = -5 \text{ or } x = -2 \text{ and } y = -5$$

$$oe$$
A1

M8.
$$(4 - x)^2 = 4x + 5$$
 M1

$$16 - 4x - 4x + x^{2} = 4x + 5$$
Allow one error but must be a quadratic in x

$$x^{2} - 12x + 11 (= 0)$$

oe Must be 3 terms A1

$$(x - 11)(x - 1) (= 0)$$

$$\frac{-12 \pm \sqrt{(-12)^2 - 4(1)(11)}}{2} \text{ or }$$

$$(x - 6)^2 - 36 + 11 = 0 \text{ oe}$$
M1

$$x = 11$$
 and $x = 1$
Must have M3 to ft
 $x = 11$ and $y = -7$ or $x = 1$ and $y = 3$
A1ft

$$x = 1$$
 and $y = 3$

x = 11 and y = -7 and

[6]

M1

Alternative method

$$y^2 = 4(4 - y) + 5$$

Allow one error but must be a quadratic in y
 $y^2 + 4y - 21 (= 0)$
oe Must be 3 terms
Al
 $(y + 7)(y - 3) (= 0)$
 $-\frac{4 \pm \sqrt{4^2 - 4(1)(-21)}}{2}$ or
 $(y + 2)^2 - 4 - 21 = 0$ oe
MI
 $y = -7$ and $y = 3$
Must have M3 to ft
 $x = 11$ and $y = -7$ or
 $x = 1$ and $y = 3$
Alfe
 $x = 11$ and $y = -7$ and
 $x = 1$ and $y = 3$
Alf
M9.10 - $x = 2x^2 + 4$
 $0e$
 $y = 2(10 - y)^2 + 4$
 $2x^2 + x - 6 = 0$
 $2y^2 - 41y + 204 = 0$
M

M1dep

$$(2x - 3)(x + 2)$$

$$(2y - 17)(y - 12)$$

$$(x =) (-1 \pm \sqrt{49}) / 4$$

$$(y =) (41 \pm \sqrt{49}) / 4$$

M1dep

$$x = -2$$
 and $x = 1.5$ oe e.g. $\frac{3}{2}$
 $y = 12$ and $y = 8.5$ oe e.g. $\frac{17}{2}$

|--|

$$x = -2$$
 and $y = 12$

and

x = 1.5 and y = 8.5

Must be paired correctly for final mark Strand (ii) SC2 for one correct final pair

Q1 [5]