B2

M1.

(a)

30y + 120w or $30(y + 4w)$	
oe	
B1 for 30y or 120w or 0.3y + 1.2w	
Do not ignore fw for B2	
SC1 for 30 <i>p</i> + 120 <i>c</i>	

Additional Guidance

30 <i>yp</i> + 120 <i>wp</i>	B2
30p + 120w	B1
30y = 120w	B1
0.3y + 120w	B1
30 <i>y</i> + 1.20 <i>w</i>	B1
30 <i>y</i> + <i>w</i> 120	B1
30y + 120w = 150yw	B1
30 <i>w</i> + 120 <i>y</i>	B0
30 <i>a</i> + 120 <i>b</i>	B0
y30 + w120	BO
30 <i>p</i> + 120 <i>p</i>	BÛ
30 <i>py</i> + 120 <i>pw</i>	BO
Use of letters other than y or w is B0	BU

Ignore p as units

(b)	Alternative method 1	
	2p + r = 265 or $p + 5r = 200$	
	or $3p + 6r = 465$	
	May work in pence or pounds	241
		MII
	(2p + r = 265)	
	2p + 10r = 400	
	10p + 5r = 1325	
	(p + 5r = 200)	
	Equating coefficients	
	oe	М1
		IVII
	9 <i>r</i> = 135	
	or <i>r</i> = 15	
	9 <i>p</i> = 1125	
	or <i>p</i> = 125	
	Eliminating a variable	
	oe	
		A1
	$Pen = (\pounds)1.25$ and $Ruler = \pounds0.15$	
	Condone 15p on answer line	
		A1
	Alternative method 2	
	2p + r = 265 or $p + 5r = 200$	
	or $3p + 6r = 465$	
	May work in pence or pounds	
		M1
	r = 265 - 2p	
	-	
	or $r = \frac{200 - p}{5}$	
	5	

p = 200 - 5r

or
$$p = \frac{265 - r}{2}$$

Making p or r the subject oe

M1

9 <i>p</i> = 1125		
or $p = 125$		
9 <i>r</i> = 135		
or <i>r</i> = 15		
Eliminating a variable		
oe		
	A1	
Pen = $(\pounds)1.25$ and Ruler = $\pounds0.15$		
Condone 15p on answer line		
	A1	
Additional Guidance		
Accept: £0.15p or 125p with £ sign crossed out		
Do not accept: 0.15p with £ sign crossed out or £125p		
Answers reversed		
	MIMIAI	
$2 \times \text{pens} + 1 \text{ ruler} = 265 \text{ with no further working}$		
	M0	
T&I scores 0 or 4		
Use any two different letters e.g. r and v p and r		
Letters not words required for the first M mark, but can be recovered by		
showing correct working for following M mark(s)		

M2.

Alternative method 1 4x - 6y = 48and 18x + 6y = -15 6x - 9y = 72(and 6x + 2y = -5) *oe* Equating coefficients 22x = 33

M1

[6]

or *x* = 1.5

-11y = 77
or y = -7

$$e$$

 $x = 1.5$ and $y = -7$
 oe
 $SC1$ for $x = 1.5$ and $y = -7$ without
working or using trial and improvement
A1
Alternative method 2
 $x = \frac{24 + 3y}{2}$ or $y = \frac{2x - 24}{3}$

or
$$x = \frac{-5 - 2y}{6}$$
 or $y = \frac{-5 - 6x}{2}$

oe Rearranging

oe

22x = 33

or *x* = 1.5

-11y = 77

or y = -7

M1 dep

M1

$$x = 1.5$$
 and $y = -7$
oe
SC1 for $x = 1.5$ and $y = -7$ without
working or using trial and improvement

Elimination of one variable

A1 [3]

M3.

3f + 4p = 82.97

Or		
5 <i>f</i> + 6 <i>p</i> = 131.95	Must be algebraic not word form	M1
9 <i>f</i> + 12 <i>p</i> = 248.9 And	1	
10f + 12p = 263.	90	
	or $15f + 20p = 414.85$	
	and	
	15f + 18p = 395.85	
	Condone one error in totals	M1
<i>f</i> = 14.99		
		AI
p = 9.5(0)		A1
£205.42		
		B1ft
Logical argumen	t with steps shown and correct conclusion made	
	Must gain method marks and make conclusion QWC strand	
	<i>III</i>	O1ft
		C C
Alternative meth	nod	
3f + 4p = 82.97		
5f + 6n = 131.95		
oj 10p - 101.00		M1
15f + 20n = 414	85	
and		
15 <i>f</i> +18 <i>p</i> = 395.8	35	
		MI
p = 9.5(0)		
		A1
82.97 + 131.95 -	their 9.5(0)	
or 214.92 - their	9.5(0)	
	Subtracting cost of one post from total of 8 panels and 10	

	posts	M1	
£205.42	ft their 9.50	A1 ft	
Logical argumer	nt with steps shown and correct conclusion made Must gain method marks and make conclusion QWC strand iii		
		Q1 ft	[6]

114.

x - 1 = 3(y - 2) or	
x + 6 = 4(y - 1)	
oe Rearranging one of the two equations	
x - 1 = 3y - 6 or $x + 6 = 4y - 4$	
	M1
x - 3y = -5 oe	
	M1
x - 4y = -10 oe	
	M1
ft from their equations (no further errors)	
oe e.g. attempts substitution and rearranges to a suitable form (earns M2)	
r = 10 or $n = 5$	
x = 10 or $y = 5Correct elimination from their equations if at least M1 earned$	
	A1ft
x 10 and x 5	
x = 10 and $y = 5$	
SC1 for $x = 10$ and $y = 5$ from no (or incorrect) working	A1

[5]

M5.4x + 6y = 20 or 12x - 3y = -3oe Allow one error

M1

$$7y = 21$$
 or $14x = 7 oe$ M1

$$x = \frac{1}{2}$$
 and $y = 3$ oe A1

Alternative method

$$x = \frac{10 - 3y}{2} \text{ or } y = 4x + 1 \text{ oe}$$

or $y = \frac{10 - 2x}{3} \text{ or } x = \frac{y - 1}{4}$
M1

$$7y = 21$$
 or $14x = 7 oe$ M1

$$x = \frac{1}{2}$$
 and $y = 3$ oe

A1

M1

[3]

 M6.2x + 3y = 53 6x + 9y = 159

 9x - 3y = 57 6x - 2y = 38 oe

 Allow one error
 M1

$$11x = 110$$
 $11y = 121$

x = 10 or y = 11

A1

M1

$$x = 10$$
 and $y = 11$

Alternative method

$$y = 3x - 19$$

$$x = \frac{y + 19}{3}$$
oe
Allow one error

$$2x+3(3x-19) = 53 \qquad \frac{2(y+19)}{3} + 3y = 53$$

$$11x - 57 = 53 \qquad 11y + 38 = 159$$
M1

$$x = 10 \text{ or } y = 11$$
 A1

$$x = 10 \text{ and } y = 11$$
 A1

M7.

(a)
$$6x + 18y = 48$$
 and
 $6x + 16y = 38$
oe
 $16x + 48y = 128$ and
 $18x + 48y = 114$
Coefficients of one variable equated. Allow one calculation
error.

M1

[4]

2y = 10

	2x = -14	
	Isolates variable	
		M1dep
<i>y</i> = 5		
	x = -7	
		A1
<i>x</i> = - 7		
	<i>y</i> = 5	
	SC1 both values correct from non-algebraic method	
		A1
Alternative 16 – 6v	e 1	
x = 2	(= 8 – 3y)	
	19 - 8y	
	x = 3	
		NI I
$\frac{16-6y}{2}$. 9 10	
3(2)	$+ \delta y = 19$	

$$2(\frac{13-6y}{3}) + 6y = 16$$
 M1dep

y = 5

A1

x = -7

x = -7SC1 both values correct from non-algebraic method

A1

M1

Alternative 2 $y = \frac{16 - 2x}{6}$

$$y = \frac{19 - 3x}{8}$$

y = 5

$$3x + 8\left(\frac{16 - 2x}{6}\right) = 19$$
$$2x + 6\left(\frac{19 - 3x}{8}\right) = 16$$

Midep
=
$$-7$$

 $x = -7$
M1
 $y = 5$
 $y = 5$
SC1 both values correct from non-algebraic method
A1

(b) Two equations with a unique solution of x = 6 and y = -5

If answer is x = 6 and y = -5 these equations must be on the answer lines B1 one correct equation with at most one incorrect equation B1 two correct equations where one is a multiple of the other If four equations are given, award B2 for all four correct and B1 for two or three correct.

B2 [6]

M8.

3a + 1.5b = 9(.00))	
or 2 <i>a</i> + 4 <i>b</i> = 13.2	(0)	B1
6 <i>a</i> + 3 <i>b</i> = 18 and	6 <i>a</i> +12 <i>b</i> = 39.6 oe equating coefficients Allow one error in totals	M1
9 <i>b</i> = 21.6	Subtracting	M1
Apples = 1.80		A1
Blackberries = 2.4	40 1.8 and 2.4 is A1 A0	A1

M9.

(a) (5, 0)

(5x, 0y) is B0 Check diagram for answer written next to P if answer line is blank

B1

(b) Correct elimination of a letter

e.g.
$$2x = 15 - 3x$$

oe e.g. $y = 15 - \frac{3}{2}y$
M1

Correctly collects terms

e.g.
$$2x + 3x = 15$$

oe e.g. $y + \frac{3}{2}y = 15$

(3, 6)

Allow x = 3 and y = 6 if not contradicted on answer line

A1

M1

M1dep

15

1

(c)

 $\overline{2}$ x their 5 x their 6

oe e.g.

ft their 5 from (a) and their 6 from (b)

their 5 from (a) and their 6 from (b)

 $\frac{2\times 6}{2} + \frac{3\times 6}{2}$

A1ft

[6]

M10.6x - 9y = 21 and 6x + 8y = 4

or 8x - 12y = 28 and 9x + 12y = 6Must be correct, no arithmetic or sign errors **M1** x = 2 or y = -1A1 6x - 9y = 21 and 6x + 8y = 4or 8x - 12y = 28 and 9x + 12y = 6(new set of balanced equations) or substitution of their x or y into any of the previous linear equations. ie balances the other coefficient or substitutes their value for x or yM1dep y = -1 or x = 2ie the other value not already found NB answers only or from T&I SC1 A1

Alternative method

 $x = \frac{3y}{2} + \frac{7}{2}$ and $3(\frac{3y}{2} + \frac{7}{2}) + 4y = 2$ This is one example of a substitution scheme. Others marked the same way First M1 for rearranging one equation correctly to make x or y the subject **and** substituting into the other

M1

y = -1

A1 is for solving to get one of the values

A1

[4]

$$x = \frac{3 \times -1}{2} + \frac{7}{2}$$
This M1 is for doing a different substitution as above to find
the other variable or substituting their value into one of the
linear equations
MIdep
$$x = 2$$
AI
M11. $(5x - 4y = 24)$ $(5x - 4y = 24)2x + 4y = 18$ $5x + 10y = 45$
oe for equating coefficients
Allow error in **one** term
M1
$$7x = 42$$
 $14y = 21$
Correct elimination from their equations
M1
$$x = 6$$
 and $y = 1.5$
SC1 correct answers with no working or using trial and
improvement
A1
Atternative method
$$x = 9 - 2y$$
 and $5(9 - 2y) - 4y = 24$
or
 $9 - x$ $4(9 - x)$

 $y = \frac{9-x}{2}$

and

$$5x - \frac{4(9-x)}{2} = 24$$

Allow **one** error ... it can be a substitution error (eg x = 9 + 2y)or a sign error in the equation

M1

Simplifying and solving as far as 14y = 21 or 7x = 42Correct simplification from their substitution

M1

x = 6	and	<i>y</i> = 1.5
		SC1 correct answers with no working or using trial and improvement

A1

[3]