M1.	Cuboid 1 1 × 2 × 2	M1
	Cuboid 2 2 × 2 × 3	M1
	Cuboid 3 3 × 2 × 4 Continues for at least 2 more products seen.	M1
	Cuboid 16 16 × 2 × 17	A1
	Finds a formula and substitutes <i>n</i> = 16 and makes a valid conclusion, eg no 544 (> 500) Strand (ii). NB SC2 544 and valid conclusion with no working	
	NB 302 344 and valid conclusion with no working.	Q1
	Alternative 1 First four cuboids have 4, 12, 24, 40 cubes	M1
	Recognises the rule +8, +12, +16 and shows +20 or 60	M1
	Continues the list to the $16^{\text{\tiny th}}$ cuboid, showing values with at most one error	
	60, 84, 112, 144, 180, 220, 264, 312, 364, 420, 480, 544	M1
	544 for 16 th value	A1
	Makes a valid conclusion based on their 16^{th} term first 2 Ms awarded, eg no 544 (> 500)	
	Strand (ii).	Q1

Alternative 2

4		12	24	40
	8	12	16	

4 4	Numbers of cubes identified and second difference calculated			
		M1		
2 <i>n</i> ²		M1		
2 4 6	(+ 2n) Difference between $2n^2$ and original series calculated	M1		
2 <i>n</i> ² + 2 <i>n</i>	$2(16)^2 + 2 \times 16$	A1		
Finds a quadra conclusion, eg	tic formula starting with $2n^2$ and substitutes $n = 16$ and makes a valid no 544 (> 500)			
	Strand (II).	Q1		
Alternative 3 Width = n				
		M1		
Height = $n + 1$		M1		
Depth 2 so volu	$ume = 2 \times n \times (n+1)$	M1		
$2n^2 + 2n$	$2(16)^2 + 2 \times 16$	A1		
Finds a quadratic formula and substitutes $n = 16$ and makes a valid conclusion, eg no 544 (> 500)				
	Strand (ii).	Q1		

M2.

First and second differences correct

i.e. 4 6 8 (10)

2 2 (2)

M1

[5]

Correctly subtracts their
$$\frac{2}{2}n^2$$
 from given sequence
i.e. 10 11 12 (13 14)
(1)n
dep on M2
Midep
 $n^2 + n + 9$
oe e.g. $n^2 + n + 10 - 1$
Alternative method
Any three of
 $a + b + c = 11$
 $4a + 2b + c = 15$
 $9a + 3b + c = 21$
 $16a + 4b + c = 29$
 $25a + 5b + c = 39$
Allow one error but each of their three equations must have
 a, b and c
MI
Eliminates one variable to obtain a pair of equations in two variables
e.g. $3a + b = 4$ and
 $5a + b = 6$
Allow one error
MI
Eliminates one variable correctly
e.g. $2a = 2$
dep on M2
Midep
 $n^2 + n + 9$
oe e.g. $n^2 + n + 10 - 1$

 $(5n - 3)^2 + 1$

		Μ
25 <i>n</i> ² - 15 <i>n</i> - 15	<i>n</i> + 9 + 1	
	Allow one error	
	Must have an n^2 term	
		N
$25n^2 - 30n + 10$		
		А
$5(5n^2 - 6n + 2)$		
	e.g. snows that all terms divide by 5 or explains why the expression is a multiple of 5	B1
Alternative met	hod 1	
Use of $an^2 + bn$	+ c for terms of quadratic sequence	
i a any ana af		
a + b + c = 5		
4a + 2b + c = 50)	
9a + 3b + c = 14	15	м
		IVI
3a + b = 45		
5 <i>a</i> + <i>b</i> = 95		
	For eliminating c	
	C C	Μ
$25n^2 - 30n + 10$		
		А
$5(5n^2 - 6n + 2)$		
o(on on)	oe	
	e.g. shows that all terms divide by 5 or explains why the	
	expression is a multiple of 5	R1
		DI
Alternative met 5 50 145	hod 2 290	
45 95 145		
-		

2nd difference of 50 \div 2 (= 25) $25n^2$

M1

Subtracts their $25n^2$ from terms of sequence

-20 -50 -80		
	-30n	M1
$25n^2 - 30n + 10$		4.1
$5(5n^2 - 6n + 2)$		AI
,	oe	
	e.g. shows that all terms divide by 5 or explains why the expression is a multiple of 5	
		B1ft

[4]