M1.

ab or −12 and −3, 8 and −12 seen

B1 for $\left(\frac{b}{a}\right) = -3$ or (a - b) = -3or (ab = -12)

[2]

[2]

B2

M2.

5 × 7 (+) 9 × –2	
or 35 or 18	
	M1

17 A1

М3.	16 seen or 32 seen or 27 seen	M1	
	(2×) 16 (+) 27		
	or 32 (+) 27	M1	
	59 SC2 43		
	002 +0	A1	[3]

M4.

12.5 × 17.6 or 220

M1

546 or 546.00

Strand(i) ft their answer in correct money notation

Q1ft [3]

M5.

(a) Substitutes and evaluates correctly to show that the answer is even

e.g. $5^{2} + 3^{2} = 34$ or $3^{2} + 5^{2} = 34$ 25 + 9 = 34 or 9 + 25 = 34 $7^{2} + 3^{2} = 58$ or $3^{2} + 7^{2} = 58$ 49 + 9 = 58 or 9 + 49 = 58 $7^{2} + 5^{2} = 74$ or $5^{2} + 7^{2} = 74$ 49 + 25 = 74 or 25 + 49 = 74Ignore fw

Additional Guidance

One correct example required with or without incorrect examples e.g. $2^2 + 3^2 = 13$, $5^2 + 3^2 = 34$

B1

B1

(b) Substitutes and evaluates correctly to show that the answer is odd

e.g. $3^{2} + 2^{2} = 13$ or $2^{2} + 3^{2} = 13$ 9 + 4 = 13 or 4 + 9 = 13 $5^{2} + 2^{2} = 29$ or $2^{2} + 5^{2} = 29$ 25 + 4 = 29 or 4 + 25 = 29 $7^{2} + 2^{2} = 53$ or $2^{2} + 7^{2} = 53$ 49 + 4 = 53 or 4 + 49 = 53Ignore fw

B1

Additional Guidance

One correct example required with or without incorrect examples e.g. $2^2 + 3^2 = 13$, $5^2 + 3^2 = 34$ $M6.\frac{1}{2} \times \frac{1}{3}$

 $\frac{1}{6}$

M7.64 × 2.5 or 160

or 93 × 2.5 or 232.5 or 232.50 oe 93 - 64 or 29

oe

oe

64 × 2.5 + 152 or 312

or

93 × 2.5 + 137 or 369.5 oe 29 × 2.5 or 72.5 or 72.50 or 152 - 137 or 15

M1dep

M1

64 × 2.5 + 152 or 312

and

93 × 2.5 + 137 or 369.5 oe 29 × 2.5 or 72.5 or 72.50 and

	152 – 137 or 15	M1dep	
their 369.5 – the	ir 312 oe 72.5 – 15	M1dep	
57.50	Strand (i) 57.5 implies M4Q0	Q1	[5]
M8. (a) 25	Embedded ie 25 – 7 = 18 B0	B1	
(b) An equatio	on whose solution is 8 Equation does not have to be linear $eg x^2 = 64$ Accept $x = 8$	B1	
(c) Two value	s where $b - a = 10$ Accept 0, negative numbers and non-integers B1 for any two values where $a + b = 10$ or for any two values where $a - b = 10$ B1 $10 + a = b$ oe seen	B2	[4]

M9. (a)	8 × 7 or 56	M1
	8 × 7 + 20 or their 56 + 20	M1dep
	76 SC2 for 216 or 196	A1
(b)	Any correct trial for [1, 20] hours $eg 8 \times 1 + 10 = (\pounds)18$	M1
	A second correct trial for [1, 20] hours	M1dep
	15	A1
	Alternative Method	
	Any correct trial for subtracting bonus and dividing by the number of hours eg $150 - 40 = 110$ $110 \div 8 = 13.75$	M1
	A second correct trial for subtracting bonus and dividing by the number of hours	M1dep

[6]

M10.	(a)	-7			B1	
		5			B1	
	(b)	At least	2 poi <i>M</i>	ints correctly plotted lay be implied from a correct line	M1	
		Straight	ruled ±	l line drawn from -3 to 3 $\frac{1}{2}$ square tolerance	A1	[4]
M11.	2 × 5 or or	3×4 $6 \times \frac{1}{2}$	or or or	10 12 3	M1	
	10 a	nd 12 and	13		A1	
	19		ft m	correct calculation with their three values, two of which nust be correct	A1ft	[3]

[3]

M12. (a)	<i>x</i> (<i>x</i> + 1)		B1
	Additiona	al Guidance	
	Accept (x + 1) x B1	
	<i>x</i> (<i>x</i> + 1 co	ndone missing final bracket B1	
(b) (−3)² + −3	or 9 seen oe do not accept if 9 is the final answer	M1
	6	SC1 - 12	A1
	Alternativ	ve method	
	-3 × -2	use of factorisation from part (a)	M1
	6	SC1 - 12	A1
	Additiona	al Guidance	

Do not accept 6 from 3 + 3 = 6 M0A0

(c)	n^2 + n is always even	
	any clear indication	R1
		DI
	$odd \times odd = odd$ or $odd^2 = odd$	
	and	
	odd + odd = even	
	Strand (ii)	
	fully correct reason	01
		¥*
	Alternative method	
	$n^2 + n$ is always even	
	any clear indication	D1
		DI
	(n is odd, so) n + 1 is even	
	and	
	$odd \times even = even$	
	Strand (ii)	
	fully correct reason	
	use of factorisation from part (a)	Q1
		-
	Additional Guidance	
	ignore further working unless a clear contradiction	

or 15 seen oe

M1

[5]

	Beams = 30		
	or Posts = 16	A1	
	Beams = 30		
	and Posts = 16 <i>ft their 15 only if M1A0</i> <i>SC1 for Beams</i> = 16 and Posts = 30	A1ft	
	Additional Guidance		
	ft only from M1A0: ft their 15 + 1 for number of posts ft their 15 × 2 for number of beams		
(b)	5×40 or 200		
	or 9 × 21 or 189	M1	
	389 SC1 for 465	A1	
	Additional Guidance		
	465 (mixed up the beams and the posts)	SC1	[5]

M14.2 × 11 and 3 × 5

or

22 or 15

	oe	M1	
37		A1	[2]
M15. (a)	75	B1	
(b)	(27 – 5) ÷ 2 Condone omission of brackets	M1	
	11	A1	
	3 ft (their 11 − 5) ÷ 2 if A0 awarded SC1 for 0.75 SC1 for 24.5 and 22	B1ft	
	Alternative Method 1		
	2x + 5 = 27	M1	
	11 or $2(2x + 5) + 5 = 27$ oe		
	or (27 – 15) ÷ 4	A1	

Alternative Method 2

Two fully correct trials eg any two of $u_1 = 1, u_2 = 7, u_3 = 19$ $u_1 = 2, u_2 = 9, u_3 = 23$ $u_1 = 4, u_2 = 13, u_3 = 31$ $u_1 = 5, u_2 = 15, u_3 = 35$

M1

M1dep

Fully correct trial with first term 3 ie $u_1 = 3$, $u_2 = 11$, $u_3 = 27$

3		
	A1	
		[4]

M16. 2 × 5 + 1	or	11
or 3×5-2	or	13
or 5+7	or	12
		oe
(2 × 5 + 1 =)		11
and (3 × 5 -	2 =)	13
and (5 + 7 =))	12

13

ft their largest value

A1ft [3]