M1.

 $\frac{x-1}{(x-2)(x-1)} - \frac{x-2}{(x-2)(x-1)}$ or x-1-(x-2)or 2(x-2)(x-1)or $x^2-2x-x+2$ oe

their [x - 1 - (x - 2)] = 2(x - 1) (x - 2)or x - 1 - x + 2or $2(x^2 - 2x - x + 2)$ oe

M1dep

A1

M1

 $2x^2 - 6x + 3 (= 0)$ oe Must be three terms

 $\frac{--6\pm\sqrt{(-6)^2-(4\times2\times3)}}{2\times2}$

or $\frac{6 \pm \sqrt{12}}{4}$

oe Allow one error, ft **their** quadratic

M1

$$\frac{--6\pm\sqrt{(-6)^2-(4\times2\times3)}}{2\times2}$$

or $\frac{6 \pm \sqrt{12}}{4}$

ft **their** quadratic, fully correct oe 2.366(...) and 0.633(...)

A1ft

2.37 and 0.63 SC2 for one correct answer to 2 dp SC1 for one correct answer to 3 dp or more A1ft **Additional Guidance** T&I with two correct answers to 2 dp scores full marks T&I with two correct answers to 3 dp or more loses final A mark ft is from *their* quadratic (must have three terms) One error is an incorrect substitution in one position or a short divisor line A negative discriminant can score M1A1ftA0ft for an attempt at a solution M2. (a) (ax + p)(bx + q)where ab = 3 and $pq = \pm 10$ or aq + bp = -13**M1** (3x + 2)(x - 5)A1 3x(x - 5)(b) **M1** 3x 3x + 2ft their answer to part (a) correctly simplified from common linear factors A1ft **Additional Guidance** Do not allow further incorrect work e.g. $\frac{3x}{3x+2}$ incorrectly simplified to $\frac{1}{2}$ **M1A0**

[4]

[6]

M3.

(a)	$5x^2 + 10xy - 2xy - 4y^2$ Allow one error in their four terms	
		M1
	$5x^2 + 10xy - 2xy - 4y^2$	
	Fully correct	
	May be in a grid	A1
	$5x^2 + 8xy - 4y^2$	
	ft their four terms	
	Do not ignore fw	
		A1ft

Alternative method 1 $\frac{2\pm\sqrt{(-2)^2-(4\times1\times-2)}}{2}$

(b)

oe Allow one error

$$\frac{2\pm\sqrt{(-2)^2-(4\times1\times-2)}}{2}$$

or
$$\frac{2\pm\sqrt{4-8}}{2}$$

oe Fully correct

A1

M1

2.7 and -0.7 SC2 for either 2.7 or - 0.7

A1

M1

Alternative method 2 0

$$(x - 1)^2 - 1 - 2 = oe$$

 $1 \pm \sqrt{3}$

(c)

	oe Fully correct	
	or 2.7() or - 0.7()	A1
2.7 and ·	– 0.7 SC2 for either 2.7 or – 0.7	A1
	I Guidance or 2.73()	M1A1A0
- 2 ² in the	discriminant is one error unless recovered	
(ax+b)(cx-		
or (x + 2)(x	(x - 2) where $ac = 3$ and $bd = -10$	
	or $ad + bc = -1$	M1
(3x + 5)(x + 5)	- 2)	A1
$\frac{3x+5}{x+2}$		
	Do not ignore fw	A1
Additiona $\frac{(3x-5)(x-5)(x-5)}{(x+2)(x-5)}$	I Guidance $(x + 2)$	
(x + 2)(x + 2)	c – 2)	M1 A0
$=\frac{(3x-5)}{(x-2)}$	<u>;)</u>	
		10

A0

M4.
$$(5x - 3)(x + 4)$$

$$(x-4)(x+4)$$
 B1

$$\frac{5x-3}{x-4}$$
 Do not allow fw

M5.

(a) $\frac{4c^5}{9d^3}$ $\frac{0.4c^5}{d^3}$

B1dep

[3]

B1

or
$$\frac{4c^5 d^{-3}}{9}$$
 or
or $0.4c^5 d^{-3}$
B2 Any two of these three components
 \circ numerator having c^5 (no c in denominator)
 \circ denominator having d^3 (no d in numerator)
or numerator having d^{-3} (no d in denominator)
 $\frac{4}{9}$ or 0.4
B1 Any one of these three components
 \circ numerator having c^5 (no c in denominator)
 \circ denominator having d^3 (no d in numerator)
 \circ denominator having d^3 (no d in numerator)
 \circ number $\frac{4}{9}$ or 0.4
 \circ number $\frac{4$

or
$$\frac{1.3c^7 d^3}{3d^6 c^2}$$
 or $\frac{\frac{4}{3}c^7 d^3}{3d^6 c^2}$
SC1 $\frac{9d^3}{4c^5}$ or $\frac{2.25d^3}{c^5}$
Always award SC1 if this is their final answer even
if $\frac{4c^5}{9d^3}$ seen in working
B3

(b)
$$(m + 1)(m - 4)$$
 or $m^2 - 3m - 4$ seen as a common
denominator
 $0e$
 $5(m - 4) + 6(m + 1)$
Allow one error in expansion if not showing brackets
e.g. Allow $5m - 20 + m + 6$
 $5m - 20 + 6m + 6$
their common denominator
or
 $\frac{5m - 20}{\text{their common denominator}^+}$
 $\frac{6m + 6}{\text{their common denominator}}$
Allow one error in expansion of numerator(s)
their common denominator must be a quadratic
 $11m - 14$
 $11m - 14$
M1

$$\frac{11m-14}{(m+1)(m-4)}$$
 or $\frac{11m-14}{m^2-3m-4}$

[7]

M6.x(x-2) or $x^2 - 2x$

oe

any correct common denominator seen

M1

$$4x - 3(x - 2)$$
 or $4x - 3x + 6$

oe

correct numerator seen for their denominator, may be written as separate fractions

M1dep

$$\frac{x+6}{x(x-2)}$$
 or $\frac{x+6}{x^2-2x}$

oe Strand (ii) correct answer with no errors in working

[3]

Q1

M7.

(ax + b)(cx + d)

- Where ac = 4 and $bd = \pm 5$ or $ad + bc = \pm 19$
- (4x 1)(x + 5) A1
- (3x 4)(3x + 4) B1

their
$$\frac{(4x-1)(x+5)}{(3x-4)(3x+4)} \times \frac{(3x-4)}{(x+5)}$$

Inverting the 2nd fraction and multiplying
Must have attempted to factorise both expressions (allow
max one error in each)
M1

 $\frac{4x-1}{3x-4}$

A1

M1

[5]

M8.

(a)
$$\frac{4(x-1)+2x}{x(x-1)}$$
oe e.g. two separate fractions
Condone absence of brackets only if recovered
M1

$$\frac{4(x-1)+2x}{x(x-1)} \qquad (=\frac{6x-4}{x(x-1)})$$

Do not condone absence of brackets even if recovered

M1

(b)
$$6x - 4 = 3x(x - 1)$$

oe e.g. $4(x - 1) + 2x = 3x(x - 1)$

$$3x^{2} - 9x + 4 (= 0)$$

-3x² + 9x - 4 (= 0)
A1

$$\frac{-9\pm\sqrt{(-9)^2-4\times3\times4}}{2\times3}$$
$$(\frac{9\pm\sqrt{33}}{6})$$

Correct use of formula for their quadratic M1 Allow one sign error (must have square root and numerator all over 2*a*) Allow M2 for correct factorisation of their quadratic

$$M2 (x - \frac{3}{2})^2 = \frac{9}{4} - \frac{4}{3} \text{ oe}$$

$$(x - \frac{3}{2})^2 = \frac{9}{4} + \frac{4}{3} = 0 \text{ oe}$$

M2

A1

2.46 and 0.543

Must both be to 3 significant figures

[7]

M9.
$$\frac{n(n-1)+n(n+1)}{2}$$

This mark is for combining fractions **or** if fractions dealt with separately, for combining n^2 terms correctly $\frac{n^2 - n + n^2 + n}{4}$ is B0 as incorrect combining of fractions

B1

$$\frac{n^2 - n + n^2 + n}{2} = \frac{2n^2}{2}$$

This mark is for eliminating -n and n either by showing by crossing or writing on same line and writing next line without them

$$\frac{n^2}{2} - \frac{n}{2} + \frac{n^2}{2} + \frac{n}{2}$$

B1

$$\frac{2n^2}{2} = n^2$$

This mark is for cancelling 2 top and bottom

$$\frac{n^2}{2} + \frac{n^2}{2} = n^2$$

B1

Alternative Method

$$\frac{n}{2}((n-1) + (n+1))$$
This mark is for factorising out a common factor.
$$\frac{n}{4}(n-1+n+1)$$
 is B0 as incorrect factorisation

B1

 $\frac{n}{2}$ (2*n*)

This mark is for combining terms inside bracket correctly

B1

[3]

 n^2 $1n^2$ is OK **B1 M10.**5(*x* + 1) or 4(*x* + 2) or (x + 2)(x + 1)or 2(x + 2)(x + 1)oe M1 5x + 5 + 4x + 8or $x^2 + 2x + x + 2$ or x^2 + 3x + 2 or $2x^2 + 4x + 2x + 4$ or $2x^2 + 6x + 4$ Allow 1 error M1dep their 5x + 5 + 4x + 8 = 2(x + 2)(x + 1)oe M1dep $2x^2 - 3x - 9 = 0$ or $2x^2 - 3x = 9$ or $2x^2 = 3x + 9$ Correctly simplified to three terms A1 (2x + 3)(x - 3)

Attempt to factorise their quadratic or uses quadratic formula with at most one error i.e. (mx + a)(nx + b) where mn = their 2 and $ab = \pm$ their 9

M1

A1

$$x = -\frac{3}{2}$$
 and $x = 3$

[6]