M1.	(a)	$(8^1 =) 8 \text{ or } (8^0 =) 1$	
	()		M1
		SC1 9 ¹	A1
		Additional Guidance $8^1 + 1$ with answer 9^1	M140
		$8^1 + 0$ with answer 8^1	МОАО
		8 on answer line without working	M0A0
		8 ¹ + 8 [°] with answer 8	M0A0
		$8 \times 1 = 8$ and $8 \times 0 = 0$ with answer 8	M0A0
	(b)	6 ⁸	
			B1
	(C)	15x'y ³ B1 two terms correct	B2
		Additional Guidance	
		$8x^7y^5$	B1
		$15x^6y^5$	B1
		$15x^7 \times y^5$	B1
		$8x^7 \times y^5$ or $15x^7 \times y^6$	B1
		$15x^{12}y^6$	

M2.

		BO	
	$15x^7 + y^5$	BO	
	$8x^7 + y^5$	BO	[5]
(a)	$2x^2 - 6x + x - 3$		
	Must be 4 terms		
	Allow one error		
	May be in a grid	M1	
	$2x^2 - 5x - 3$		
	Do not ignore fw	A1	

Additional Guidance

$2x^2 - 5x + 3$	M1A0
$2x^2 - 5x + -3$	M1A0
$2x^2 - 4x - 3$	

For method mark the four terms may be e.g. in a grid with correct negative signs

(b)
$$(y-4)(y+6)$$

B1 for $(y+a)(y+b)$ such that
 $ab = -24$ or $a + b = 2$
or B1 for
 $y(y+6) - 4(y+6)$
or $y(y-4) + 6(y-4)$

B2

M0A0

Additional Guidance

(y + 4)(y - 6)

	(y - 12)(y + 2)	B1
	(y + 13)(y - 11)	B 1
	<i>y</i> (<i>y</i> + 6)	B0
	Condone use of <i>x</i> or another letter	
(c)	$32x^5 y^{15}$ B1 for two terms correct in a product	
	Additional Guidance	B2
	Penalise multiplication signs for B2 + sign(s) in answer scores B0 Mark final answer	
	$32 \times x^5 \times y^{15}$	B 1
	$32 \times 5x^5 \times y^{15}$	B 1
	$32x^5 y^8$	B 1
	$32xy^{15}$	B1
	$32 + x^5 + y^{15}$	B0

M3. (a)	$3 \times 3 = 9$ and $\sqrt{3} \times \sqrt{3} = 3$
	or $3^{\frac{1}{2}} \times 3^{\frac{1}{2}} = 3$
	$\sqrt{3}$ × $\sqrt{3}$ is essential seen or implied
	Accept $(3^{1.5})^2 = 33 = 27$ oe

B1

[6]

(b)

$(3\sqrt{3})^2 - (3\sqrt{2})^2 (= 27 - 18)$	
or $(3\sqrt{2})^2$ + AD ² = $(3\sqrt{3})^2$ Invisible brackets must be recovered for M1	M1
√9 or 3	A1
$3\sqrt{2} + \sqrt{2} (= 4\sqrt{2})$ Dep on M1, not on A1 as well	М1Дер
0.5 × their base × their 3	М1Дер
6√2	A1
Alternative Method 1	
$(3\sqrt{3})^2 - (3\sqrt{2})^2 (= 27 - 18)$ Invisible brackets must be recovered for M1	M1
√9 or 3	A1
Area $ABD = 0.5 \times \text{their } 3 \times 3\sqrt{2}$ and area $ADC = 0.5 \times \text{their } 3 \times \sqrt{2}$ Dep on M1, not on A1 as well	М1Дер
Area $ABD = 0.5 \times \text{their } 3 \times 3\sqrt{2} + \text{area } ADC = 0.5 \times \text{their } 3 \times \sqrt{2}$ Sum of two correct areas for their AD	М1Дер

M4.

(a)

[6]

6√2	A1
Alternative Method 2 $(3\sqrt{3})^2 - (3\sqrt{2})^2 (= 27 - 18)$ Invisible brackets must be recovered for M1	M1
√9 or 3	A1
$3\sqrt{2} + \sqrt{2} (= 4\sqrt{2})$ Dep on M1, not on A1 as well	М1Дер
Sin <i>ABD</i> = their 3 ÷ 3 $\sqrt{3}$ and Area = 0.5 × 3 $\sqrt{3}$ × Their 4 $\sqrt{2}$ × their $\sqrt{3}$	M1Dep
6√2	A1
$\frac{a^{9}(x)b^{10}}{a^{11}(x)b^{6}} \text{ or } a^{9-11} (x) b^{10-6}$	M1

$$a^{-2}$$
 (x) b^4 or $\frac{b^4}{a^2}$
A1 a^{-2} or b^4 (M1 is implied)

AQA GCSE Maths - Manipulate Surds

or $\left(\frac{b^2}{a}\right)^2$ or $(a^{-1}(x)b^2)^2$ SC1 $a^2(x)b^{-4}(xc)$

A2

(b)
$$q^{-3}(x) r^{-2}$$
 or $\frac{1}{q^{3}(x)r^{2}}$
 $B1 q^{-3}$ or r^{-2} or $(q^{6}(x)r^{4})^{-\frac{1}{2}}$ or
 $(q^{-6}(x)r^{-4})^{\frac{1}{2}}$ or $\sqrt{q^{6}(x)r^{4}}$ or
 $\sqrt{\frac{1}{q^{6}(x)r^{4}}}$ or $(q^{3}(x)r^{2})^{-1}$
or $p^{-1} = q^{3}(x)r^{2}$
or $p^{2} = q^{-6}(x)r^{-4}$
or $p^{2} = \overline{q^{6}(x)r^{4}}$

B2

B2

[5]

M5.

 $8c^{3}d^{12}$

B1 For two out of three components correct

[2]

M6. (a) y¹¹ (b) w⁸ B1

(c)
$$y-2 = 3x$$
 or $\frac{y}{3} = x + \frac{2}{3}$ or $-3x = 2 - y$
M1
 $\frac{y-2}{3} = x$ or $x = \frac{2-y}{-3}$

oe
SC1 for
$$x = \frac{2-y}{3}$$
 or $x = \frac{y+2}{3}$

A1

[4]