M1.
$$w - 3 = \sqrt{t}$$

or $\sqrt{t} = w - 3$ or $(w - 3)^{2}$ or $-\sqrt{t} = 3 - w$
M1

$$t = (w - 3)^2$$

oe ignore
$$fw$$

SC1 $t = (w + 3)^2$

A1

B1

Q1

M1

[2]

M2.

- (a) Ticks '*T*' is always odd' Any indication
 - Odd \times 5 (or odd) is odd **and** odd -2 (or even) is odd **or** 5 \times odd ends in 5 so 5 \times odd -2 ends in 3 Strand (ii) Full explanation with correct box ticked

(b)
$$T+2=5n$$

 $-T-2=-5n$ $\frac{T}{5}=n-\frac{2}{5}$
 $n=\frac{T+2}{5}$
 $n=\frac{-T-2}{-5}$ $n=\frac{T}{5}+\frac{2}{5}$
 $SC1$ $\frac{T+2}{5}$ or $\frac{-T-2}{-5}$ or $\frac{T}{5}+\frac{2}{5}$

A1

[4]

M3. (a)
$$12 - x = 15$$
 or $12 - x = 5 \times 3$
 $oe \quad 4 - \frac{x}{3} = 5$
M1
 $-x = their 15 - 12$ or $x = 12 - their 15$
 $or \quad 4 - 5 = \frac{x}{3}$
 $-1 = \frac{x}{3}$
 $or \quad 5 - 4 = \frac{-x}{3}$
M1
 -3
(b) $3t = s - 4$ or $\frac{5}{3} = t + \frac{4}{3}$
 oe
 $(t =)\frac{s - 4}{3}$ or $(t =)\frac{5}{3} - \frac{4}{3}$ or $(t =)\frac{4 - 5}{-3}$
 oe
 $SC1$ $(t =)\frac{4 - 5}{3}$ or $(t =)\frac{s + 4}{3}$
A1

[5]

M4. x(y-5) = 2 + 3y

M1

xy - 5x = 2 + 3y

PhysicsAndMathsTutor.com

M1dep

$$xy - 3y = 2 + 5x$$
 or $y(x - 3) = 2 + 5x$
or $-5x - 2 = 3y - xy$ or $-5x - 2 = y(3 - x)$

M1 dep

$$y = \frac{2+5x}{x-3}$$

$$y = \frac{-5x-2}{3-x}$$

SC3 for $y = \frac{7}{3-x}$ or $y = \frac{-7}{3-x}$

only from an incorrect expansion of xy - 5 = 2 + 3y at 2nd stage

A1

[4]

M5. w - x = y(2x - 3) oe multiplying through by y M1

w - x = 2xy - 3y oe

multiplying out bracket (this line gets M2 even if 1ª line not seen)

w + 3y = 2xy + x oe collecting terms

 $x = \frac{\frac{w+3y}{2y+1}}{oe}$

M1

M1

_

M1

A1

[4]

M6.
$$2h - 2y = 5y + 3$$

 $2h - y = 5y + 3$ is M0
M1
 $2h = 5y + 2y + 3$ or $2h = 7y + 3$
for correct rearranging after attempt at expansion seen

$$2h = 5y + y + 3$$
 is M1
 $2h = 5y + 2y + 3$ is M0

$$h = \frac{7y+3}{2} \quad h = \frac{5y+2y+3}{2}$$

$$Must see h = \dots$$

$$ft \text{ if } M1 \text{ } M0 \text{ or } M0 \text{ } M1 \text{ awarded}$$
A1 ft

Alternative method

$$h - y = \frac{5y + 3}{2}$$

$$h - y = 2.5y + 1.5$$
M2
$$h = \frac{5y + 3}{2} + y \quad h = \frac{5y + 2y + 3}{2}$$

$$h = 2.5y + y + 1.5 \text{ or } h = 3.5y + 1.5$$
Must see $h = ...$

A1 ft

[3]

M7. (a) $8x^4y^7$

B2

(b)
$$4y(5y-2x)$$

B1 for $4y(? - ?)$
or $4(5y^2 - 2xy)$ or $8y(2.5y - x)$ or $y(20y - 8x)$ or $8(2.5y^2 - xy)$ or $2(10y^2 - 4xy)$ or $2y(10y - 4x)$
B2

B1 for two out of three parts correct eg $6x^4y^7$

(c)
$$w - y = \frac{x}{r}$$
$$wr = yr + x \quad or \quad -x = yr - wr \quad oe$$
M1

$$r(w - y) = x$$

$$wr - yr = x$$

Must have $x = \dots$ oe A1

(d)
$$6x^2y^2$$

B1 for $18x^3y^3$ or any other common multiple

B2

M1

[8]

M8.
$$3y - p = 2h + hy$$
 M1

3y - hy = 2h + p

$$-2h - p = hy - 3y$$

This mark is for correct rearranging from an incorrect 4 term expansion in the first step

y(3-h) = 2h + p

$$-2h - p = y(h - 3) \text{ Dependent on first M mark}$$
 M1 dep
$$y = \frac{2h + p}{3 - h}$$
$$\frac{-2h - p}{h - 3} = y$$
A1

[4]