M1.

$$6c(c^{2} + 5) \text{ or } 3(c^{2} + 5)$$
M1
$$\frac{6c(c^{2} + 5)}{3(c^{2} + 5)}$$
This mark implies first M1
M1
$$2c \text{ and multiple of } 2 \text{ so even}$$

$$oe \text{ statement}$$
Must see method
A1

M2.

(a)	$(n-6)^2$ could be zero (so she is wrong)	
	or	
	The sixth term is 1	
	oe	

B1

(b) 1 B1

[2]

[3]

M3.

Alternative method 1 $4x^2 + 6xy + 6xy + 9y^2$

or
$$4x^2 - 6xy - 6xy + 9y^2$$

Four terms, three correct with a term in x^2 and a term in y^2
or $4x^2 \pm 12xy + ay^2$ with $a \neq 0$
or $bx^2 \pm 12xy + 9y^2$ with $b \neq 0$
M1

 $4x^2 + 12xy + 9y^2 - (4x^2 - 12xy + 9y^2)$ or $4x^2 + 12xy + 9y^2 - 4x^2 + 12xy - 9y^2$ oe allow one error, which may be missing brackets

M1dep 24xy = 360oe M1xy = 15 (and 15 is a multiple of 5) A1

Alternative method 2

(2x + 3y + 2x - 3y)(2x + 3y - (2x - 3y))

or

(2x + 3y + 2x - 3y)(2x + 3y - 2x + 3y)	
allow one error, which may be missing brackets	
	M1

	Correct simplification of both of their brackets and intention to multiply	M1dep
24 <i>xy</i> = 360	oe	M1

A1

Additional Guidance

xy = 15 (and 15 is a multiple of 5)

Missing brackets in Alt 1 for second method mark may be recovered for M3 or M3A1

4. $5x^2$ + 30 <i>x</i>	
or $9x^2 + 15x + 15x + 25$	
or $9x^2 + 30x + 25$	M1
$5x^2 + 30x - (9x^2 + 15x + 15x + 25)$	
or $5x^2 + 30x - (9x^2 + 30x + 25)$	
or $5x^2 + 30x - 9x^2 - 15x - 15x - 25$	
or $5x^2 + 30x - 9x^2 - 30x - 25$ allow one error	M1
$-4x^2 - 25$ or $-(4x^2 + 25)$	

from fully correct algebra

A1

Q1ft

Argues that both terms have to be negative so expression is negative Strand (ii) correct mathematical argument and M2 scored argument may be that their expression is not negative for all values of x

[4]

M5.

(a) 29 and 23 identified

B1 (*n* + 9)(*n* + 3) or 667 or 29 or 23

(b) Alternative method 1 $(n - 3)^2$ Allow (n - 3)(n - 3) for $(n - 3)^2$ **M1** $(n-3)^2 - 9 + 14$ or $(n-3)^2 + 5$ Allow (n - 3)(n - 3) for $(n - 3)^2$ **A1** $(n-3)^2 \ge 0$ then adding 5 so always positive or States minimum value is 5 or States (3, 5) is minimum point oe Allow (n - 3)(n - 3) for $(n - 3)^2$ ft M1 A0 Must see M1 and attempt $(n - 3)^2 + k$ $ft (n - 3)^2 + k$ where k > 0SC2 States minimum value is 5 or States (3, 5) is minimum point A1ft Alternative method 2 Quadratic curve sketched in first quadrant with minimum point above the x-axis Labelling on axes not required M1(discriminant =) -20A1 States no (real) roots oe Allow roots \rightarrow solutions ft M1 A0 Must see M1 and attempt a discriminant ft discriminant < 0 SC2 States minimum value is 5 or States (3, 5) is minimum point A1ft

2n - 6 = 0)	
	oe equation	
	e.g. $2n = 6$ or $n = 3$	M1
(second d	erivative =) 2	A1
States mir or	nimum value is 5	
States (3,	5) is minimum point	
	oe	
	ft M1 A0	
	Must see M1 and attempt a second derivative	
	ft (second derivative) > 0	
	SC2 States minimum value is 5	
	or	
	States (3, 5) is minimum point	
		A1ft

[5]

M6.

$$(8x - y)^2 = (6x)^2 + (x + y)^2$$

oe
Allow $(8x - y) (8x - y)$ and $(x + y) (x + y)$
Condone $6x^2$

Expands $(8x - y)^2$ to 4 terms with 3 correct from $64x^2 - 8xy - 8xy + y^2$ oe If going straight to 3 terms must be $64x^2 - 16xy + ky^2$ ($k \neq 0$) or $ax^2 - 16xy + y^2$ ($a \neq 0$)

M1

Expands $(x + y)^2$ to 4 terms with 3 correct from $x^2 + xy + xy + y^2$

If going straight to 3 terms must be $x^{2} + 2xy + ay^{2}$ ($a \neq 0$) or $bx^{2} + 2xy + y^{2}$ ($b \neq 0$)

M1

$$27x^{2} - 18xy (= 0) \text{ or } 27x^{2} = 18xy$$

or better
e.g.1 9x² - 6xy (= 0)
e.g.2 3x² = 2xy
$$64x - 16y = 36x + x + 2y$$

or equivalent linear equation
e.g.1 64x - 16y - 36x = x + 2y
e.g.2 64x - 16y - x - 2y = 36x

A1

Any correct factorisation of their $px^2 + qxy$ or correct division of their $px^2 = qxy$ by a multiple of x(p and q non zero) e.g.1 9x (3x - 2y) (= 0) e.g.2 3x (9x - 6y) (= 0) e.g.3 27x = 18ye.g.4 9x = 6y

Correct collection and correct simplification of terms for their linear equation in *x* and *y*

e.g. 27x = 18yTo gain this mark there must have been some expansion of brackets seen

M1

 $3x = 2y \text{ or } \frac{x}{y} = \frac{2}{3} \text{ or } \frac{y}{x} = \frac{2}{3}$ or $x = \frac{2}{3}y \text{ or } \frac{y = \frac{3}{2}x}{y} \text{ or } \frac{x}{x} = \frac{3}{2}y$ $\frac{x}{2} = \frac{y}{3} \text{ or } \frac{2}{x} = \frac{3}{y}$ Must see M1 M1 M1 A1

Do not allow if a contradictory statement is also seen

M7.(3n + 5)(n - 1) or $3n \times n$

 $\frac{3n^2 - 3n + 5n - 5 - 3n^2}{3n(n-1)}$

or $\frac{3n^2 + 2n - 5 - 3n^2}{3n(n-1)}$

Additional Guidance

Denominator used

Ignore repetition of right hand side - see script S3

$$(3n+5)(n-1) - 3n \times n$$
 M1dep

A1

B1

M1

[3]

M8.

(a) 2n + 1 or 1 + 2n

(b) (2n-1)(2n+1)oe e.g. (2n+1)(2n+3) or (2n-3)(2n-1)M1

$$4n^2 - 2n + 2n - 1$$
 or $4n^2 - 1$
oe e.g. $4n^2 + 2n + 6n + 3$
or $4n^2 - 6n - 2n + 3$

 $4n^2$ is a multiple of 4

[4]

so $4n^2 - 1$ is one less oe clear explanation from their (correct) expression A1 M9. $\frac{n(n-1)+n(n+1)}{2}$ This mark is for combining fractions or if fractions dealt with separately, for combining n^2 terms correctly $\frac{n^2 - n + n^2 + n}{4}$ is B0 as incorrect combining of fractions

$$\frac{n^2 - n + n^2 + n}{2} = \frac{2n^2}{2}$$

This mark is for eliminating -n and n either by showing by crossing or writing on same line and writing next line without them

$$\frac{n^2}{2} - \frac{n}{2} + \frac{n^2}{2} + \frac{n}{2}$$

B1

B1

$$\frac{2n^2}{2} = n^2$$

This mark is for cancelling 2 top and bottom

$$\frac{n^2}{2} + \frac{n^2}{2} = n^2$$

1	n	1
	к	
	-	-

Alternative Method

$$\frac{n}{2}((n-1) + (n+1))$$
This mark is for factorising out a common factor.
$$\frac{n}{4}(n-1+n+1)$$
 is B0 as incorrect factorisation

$\frac{n}{2}$ (2 <i>n</i>)	This mark is for combining terms inside bracket correctly		B1	
n²	1n² is OK		B1	[3]
M10. $5n^2 - 5n + 3n -$	3 oe 4 terms with 3 correct including a term in n^2	M1		
$5n^2 - 5n + 3n -$	3 Fully correct oe e.g. $5n^2 - 2n - 3$	MI A1		
$6n^2 - 3$ $3(2n^2 - 1)$ or	states that both terms are multiples of 3 oe	A1		
		AI		[4]
M11.8 × $\frac{1}{2}$ <i>n</i> (<i>n</i> + 1)	(+1)		M1	
4n(n + 1) (+ 1) or $4n^2 + 4n$ (+	1)			

M1dep $(2n + 1)^2$ or (2n + 1)(2n + 1)A1 $(2n + 1)^2$ is a square number oe or 2n + 1 is odd and $odd \times odd = odd$ $odd^{e} = odd$ or multiple of 4 is even and even + 1 = oddor n(n + 1) is odd x even or even x odd so n(n + 1) is even or $4(n^2 + n)$ is even and even + 1 = oddand even x 4 = even and even + 1 = oddor $4n^2$ is even **and** 4n is even and even + 1 = odd A1 $(2n + 1)^2$ is a square number and or 2n + 1 is odd and $odd \times odd = odd$ Strand (ii) Both parts of the proof required. or multiple of 4 is even and even + 1 = odd

or		
n(n + 1) is odd x even of even x odd so $n(n + 1)$ is even		
en		
odd		
and $even \times 4 = even$ and $even + 1 = odd$		
d 4 <i>n</i> is even		
odd SC1 for 8 × S = even and even + 1 = odd		
	Q1	[5]
(3n + 1)n		
or $n(n - 2)$ as denominator on LHS	M1	
(3n + 1)n	M1 dep	
	or n(n + 1) is odd × even or even × odd so $n(n + 1)$ is even en odd and $even \times 4 = even$ and $even \times 4 = even$ and $even + 1 = odd$ d $4n$ is even odd SC1 for $8 \times S = even$ and $even + 1 = odd$ (3n + 1)n or $n(n - 2)$ as denominator on LHS (3n + 1)n	or n(n + 1) is odd × even or even × odd so $n(n + 1)$ is even en odd and even × 4 = even and even + 1 = odd d 4n is even odd SC1 for 8 × S = even and even + 1 = odd Q1 (3n + 1)n or $n(n - 2)$ as denominator on LHS M1 (3n + 1)n M1 dep

 $3n^2 - 6n - n + 2$ or $-3n^2 - n$ dep on first M1 only

 $3n^2 - 6n - n + 2$ and $-3n^2 - n$ Correct common denominators must be used for 4 marks to be awarded

A1

M1 dep

M1

3.	$(\mathbf{r} \mathbf{o})^2 \mathbf{d}$		
	$(5n - 3)^2 + 1$		M1
	$25n^2 - 15n - 15n$	<i>i</i> + 9 + 1	
		Allow one error	
		Must have an n^2 term	M1
	$25n^2 - 30n + 10$		Δ1
	$5(5n^2 - 6n + 2)$		AI
	0(011 011 2)	oe	
		e.g. shows that all terms divide by 5 or explains why the expression is a multiple of 5	B1ft
	Alternative methods $Use of an^2 + bn - bn$	rod 1 ⊢ <i>c</i> for terms of quadratic sequence	
	i.e. any one of $a + b + c = 5$		
	4a + 2b + c = 50 9a + 3b + c = 143	5	
			M1
	3a + b = 45		
	5 <i>a</i> + <i>b</i> = 95		
		For eliminating c	M1
	$25n^2 - 30n + 10$		A1
	$5(5n^2 - 6n + 2)$		
		oe	
		e.g. shows that all terms divide by 5 or explains why the expression is a multiple of 5	B1ft

Alternative method 2

5 50 145 290

45 95 145

2nd difference of	f 50 ÷ 2 (= 25)	
	$25n^2$	M1
		IVII
Subtracts their 2	$5n^2$ from terms of sequence	
-20 -50 -80		
	-30n	
		M1
$25n^2 - 30n + 10$		
		A1
$5(5n^2 - 6n + 2)$		
	oe	
	e.g. shows that all terms divide by 5 or explains why the expression is a multiple of 5	
		B1ft