A1

[3]

M1.
$$(x - 3)(x + 3)$$

Substitutes any value for x into both
expressions but not $x = 0$
M1
 $(x - 3)(x + 5)$
Sets up a correct equation in b
M1dep
 $(b = 2 \text{ or } x^2 + 2x - 15$

M2.

(a)
$$(c+4)(c+1)$$
 or $3(c+1)$
Correct factorisation

$$\frac{(c+4)(c+1)}{3(c+1)} = \frac{c+4}{3}$$

Must be a fraction and completed to $\frac{c+4}{3}$

Correctly converts to a common denominator

e.g. 1
$$\frac{2(c+4)}{6} + \frac{3-2c}{6}$$

e.g. 2
$$\frac{6(c+4)}{18} + \frac{3(3-2c)}{18}$$
$$M2 \quad \frac{2c}{6} + \frac{8}{6} + \frac{3}{6} + \frac{2c}{6}$$

(b) Correctly expands their brackets (must have common denominator)

M1

M1

A1

$$\frac{2c+8+3-2c}{6} \text{ or } \frac{2c+8}{6} + \frac{3-2c}{6}$$
Allow M1 if their first line of working is
$$\frac{2c+4+3-2c}{6} \text{ or } \frac{2c+4}{6} + \frac{3-2c}{6}$$
MI
$$\frac{11}{6} \text{ or } 1\frac{5}{6} \text{ or } 1.833(...).$$

$$\frac{33}{18} \text{ A 0} \quad \frac{5.5}{3} \text{ A 0} \quad \frac{8+3}{6} \text{ A 0}$$
Alternative method
Correctly converts to a common denominator
e.g. $\frac{6(c^2+5c+4)}{6(3c+3)} + \frac{(3-2c)(3c+3)}{6(3c+3)}$
oe
May also expand the denominator
Correctly expands their brackets (must have common denominator)
$$\frac{6c^2+30c+24+9c+9-6c^2-6c}{6(3c+3)} \text{ or } \frac{6c^2+30c+24}{6(3c+3)} + \frac{9c+9-6c^2-6c}{6(3c+3)} \text{ or } \frac{6c^2+30c+24}{6(3c+3)} + \frac{9c+9-6c^2-6c}{6(3c+3)} \text{ or } \frac{61}{6(3c+3)} \text{ or } \frac{61}{6(3c+3)} + \frac{9c+9-6c^2-6c}{6(3c+3)} \text{ or } \frac{61}{6(3c+3)} \text{ or } \frac{5.5}{6} \text{ A 0} \frac{8+3}{6} \text{ A 0}$$
Alternation
$$\frac{11}{6} \text{ or } 1\frac{5}{6} \text{ or } 1.833(...).$$

$$\frac{33}{18} \text{ A 0} \quad \frac{5.5}{3} \text{ A 0} \quad \frac{8+3}{6} \text{ A 0}$$
Alternation
Alt

M3. $c^2 = 16 \text{ or } c = 4 \text{ or } c = -4$

$$3x^2 + 3cx + cx + c^2$$
 (= $3x^2 - dx + 16$)
 $3x^2 + 12x + 4x + 16 \text{ or } 3x^2 - 12x - 4x + 16 \text{ oe}$

M1

[5]

$$c = 4$$
 and $c = -4$ or $4c = -d$ or $16 = -d$ or $-16 = -d$
oe M1

c = 4 and d = -16 or c = -4 and d = 16One pair of answers orall four answers seen but not paired

A1

c = 4 and d = -16**and**c = -4 and d = 16

Both pairs of answers must be correctly paired SC3 for one correct pair or both correct pairs or all four answers seen but not paired from **no** working

A1