M1. <i>x</i> ² – <i>cx</i> – <i>cx</i> +	$-C^2$	
or <i>x</i> ² – 2 <i>cx</i>	+ C^2	
or $a = c^{2}$		
or 12 = 2 <i>c</i>		
or $12x = 2c$	X	
or $-12x = -12x$	- 2 <i>cx</i>	M1
<i>c</i> = 6		A1
<i>a</i> = 36		
	ft their c ²	Alft
Alternative	Method	
$(x - 6)^2 + a$	- 36	M1
<i>c</i> = 6		A1
<i>a</i> = 36		
	ft their c^2	1 1 Pz

A1ft
[3]

M2 .use of $(x - 4)^2$	M1
(<i>x</i> − 4)² − 16 (+ 20)	A1
$(x - 4)^2 - 16 + 20 = (x - 4)^2 + 4$ Strand (ii) Complete and correct algebraic explanation	Q1
Alternative method 1	
use of $(x - 4)^2$	M1
$= x^2 - 8x + 16$	A1
$(x - 4)^2 + 4 = x^2 - 8x + 20$ Strand (ii) Complete and correct algebraic explanation	Q1
Alternative method 2	
$x^2 - ax - ax + a^2 (+a)$	M1
<i>a</i> = 4	A1
Also $4^2 + 4 = 20$	

Strand (ii)

Complete and correct algebraic explanation
Q1
(b) explains that a square is always positive (or zero) oe
and a positive number is added so is always positive oe
B1
[5]
M3.
$$x^2 - 7x - 7x + 49 (-a)$$
 or $x^2 - 14x + 49 (-a)$
 $a = -14$
 $a = -14$ M1
 $a = -14$ M1
 $b = 63$
ft for $b = 35$ from $a = 14$, if M mark earned
A1 ft

Alternative method

Substitutes a value for x in the identity eg	x = -1 gives $b = 63$	
	Ν	M 1

<i>a</i> = -14	
	A1

<i>b</i> = 63	
	A1

[3]