M1.

(Gradient of $PQ = \frac{-4}{7}$

Allow 0.57 or better for
$$\overline{7}$$

 $0 = \frac{-4}{7} \times 14 + K$ $(K =) 14 \times their \quad \frac{4}{7} \quad or -14 \times their \quad \frac{-4}{7} \quad (= 8)$ 8 marked at the *y*-intercept ft non-integer gradient

4

M1

[4]

B1

 $y = \frac{-4}{7x + 8}$ ft non-integer gradient A1ft

4x + 7y = 56oe ft their equation with a non-integer coefficient of x and M1 awarded A1ft

M2.

(a) Gradient
$$AC = \frac{4-0}{0-12}$$
 or $-\frac{1}{3}$
oe

$$y = -\frac{1}{3}x + 4$$

oe e.g. $x + 3y = 4$
Must be an equation

A1

M1

(b) Gradient OB = 3ft Their gradient in (a) using $m1 \times m2 = -1$ B1ft Equation of *OB*: y = 3xft Their gradient OB M1 $3x = -\frac{1}{3}x + 4$ ft Their equations **M1** $x = \frac{6}{5}$ or 1.2 oe (x coordinate of midpoint of OB) ft From their linear equations A1ft $y = \frac{18}{5}$ or 3.6 oe (y coordinate of midpoint of OB) A1 $\left(\frac{12}{5}, \frac{36}{5}\right)$ or (2.4,7.2) oe ft Their x and y values for the midpoint B1ft

[8]