M2.

M3.

M1. y = 5x + 2

B1

[2]

B2

M1

[1]

[2]

[2]

10 = -2(-3) + *c* or *c* = 4

3y = 15x - 3 and y = 5x - 3

or

y - 10 = -2(x - (-3)) or y = -2x + c

y = -2x + 4 A1

B1 3y = 15x - 3 and y = 5x - 3 and one incorrect

3y = 15x - 3 or y = 5x - 3 and none or one incorrect

M4.

m = 5 B1

$$3 = 5 \times 4 + c \text{ or } 3 = 20 + c$$

y - 3 = 5 (x - 4) or y - 3 = 5x - 20
oe
M1

c = -17

SC1 for $y = -0.2 \times + 3.8$ (using the perpendicular gradient)

A1

M5. Gradient of $AC = -2$ or $y = -2x + 4$	M1
$0 = \text{their} -2 \times 1 + c$	M1dep
c = 2 and $y = -2x + 2$	A1
Alternative method 1	
Line drawn parallel to AC passing through (0, 2) and B	M1
Calculating or stating gradient of both lines as -2	
eg $y = -2x + 2$ and $y = -2x + 4$	M1dep
Reference to intercept being 2 and stating $y = -2x + 2$	A1
Alternative method 2	
Line drawn parallel to AC passing through (0, 2) and B	M1

Intercepts are (0, 2) and (1, 0) so equation is (y intercept) $\times x + (x \text{ intercept}) \times y = (y \text{ intercept}) \times (x \text{ intercept})$

M1dep

M6.

Therefore (2) ×
$$x$$
 + (1) × y = (2)(1) \rightarrow 2 x + y = 2

A1 [3]

Right-angled triangle drawn above or below either line, with lengths indicatedorEither 2 and 6 or 3 and 9 used as a ratio or fraction

Correct substitution into gradient formula
$$\frac{y^2 - y^1}{x^2 - x^1}$$
 ... or
inverted
Award for $\frac{1}{3}$ seen with no working
M1
 $\frac{2}{6}$ and $\frac{3}{9}$
A1
Both simplify to $\frac{1}{3}$ so lines parallel or have same gradient
or
Equations are $y = \frac{1}{3}x + 2$ and $y = \frac{1}{3}x - 3$ hence lines are parallel or lines havesame
gradient
A1

M1

[3]

13

$$B = (4, 13)$$
 or $C = (0, 13)$ seen is M1 A1

A1

y = 3x + 13

SC1 y = 3x + c $c \neq 0$ and c > 0 but not c = l C = 3x + c $c \neq 13$ scores no marks SC2 for C = 3x + 13

A1

[3]