M1.

(a)	y = 3x + 2	B1
(b)	(PQ =) 3 − 0 or 3 Accept if seen on LHS of ratio (PQ) or as denominator in a gradient calculation for PR	M1
	(9, 14) or $x = 9$ or ($RS = $) 9 – 4 or 5	M1
	3:5	A1

M2.

y = 3x - 2

$$eg \quad \frac{y}{3} = x - \frac{2}{3}$$

$$B2 \quad y = -3x - 2$$
or
$$3x - 2$$
or
$$y = 3x + c$$
or
$$gradient = \frac{6}{2} \text{ or } 3$$
and intercept = -2
$$B1 \quad y = mx - 2$$
or
$$y = -3x + c$$
or
$$-3x - 2$$
or
$$3x + c$$
or
$$gradient = \frac{6}{2} \text{ or } 3$$
or
intercept = -2

B3

Additional Guidance Gradient is implied by correct division

[3]

[4]

M3.

$$10 = -2(-3) + c \text{ or } c = 4$$

$$y - 10 = -2(x - (-3)) \text{ or } y = -2x + c$$

M1

$$y = -2x + 4$$

[2]

M4.

Alternative met A (6, 0) or $x = 6$	t hod 1 (for <i>A</i>)	
	May be on diagram or be implied	
1		B1
$\overline{2}$ × their 6 × y =	= 24	
v = 8		M1
,	Only ft B0 M1	
their $8 = 12 - 2x$	5	A1ft
		M1
<i>x</i> = 2		
	ft their y	
	SC2 Answer (8, 2) with no valid working	
	SC1 B (0, 12) or $y = 12$ (for B)	

Alft

Alternative method 2

A (6, 0) or x = 6 (for A) May be on diagram or be implied B1 B1 B1 B1 B1 B1 B1 B1 Constant B1 B1 B1 B1 Constant B1 B1 Constant Constan

M1

```
x = 2
                    Only ft B0 M1
                                                                                           A1ft
y = 12 - 2 \times \text{their } 2
                                                                                            M1
y = 8
                    ft their y
                    SC2 Answer (8, 2) with no valid working
                    SC1 B (0, 12) or y = 12 (for B)
                                                                                           A1ft
Alternative method 3
A (6, 0) or x = 6 (for A)
                   May be on diagram or be implied
                                                                                             B1
1
\overline{2} x their 6 x y = 24
                                                                                            M1
y = 8
                    Only ft B0 M1
                                                                                           A1ft
B (0, 12) or y = 12 (for B)
and
                 1
(area OAB =) \overline{2} \times their 6 × 12 or 36
and
1
\overline{2} \times 12 \times x = their 36 – 24
                                                                                            M1
x = 2
                    Only ft B0 with 2nd M1 gained
                    SC2 Answer (8, 2) with no valid working
                    SC1 B (0, 12) or y = 12 (for B)
                                                                                           A1ft
Alternative method 4
```

A (6, 0) or x = 6 (for A) May be on diagram or be implied B1 B (0, 12) or y = 12 (for B) and (area $OAB = \frac{1}{2} \times 12$ or 36 and $\frac{1}{2} \times 12 \times x =$ their 36 - 24

		M1
x = 2	Only ft B0 M1	
1		A1ft
$\frac{1}{2}$ × their 6 × v =	= 24	
2		M1
<i>y</i> = 8	Only & Dowith One INA and in a	
	Only it BU with 2nd M1 gained	
	SC2 Answer $(0, 2)$ with no valid working	
	SCTD(0, TZ) of $y = TZ(10TD)$	A1ft
	1	
Alternative met $A(6, 0)$ or $x = 6$	(for A)	
x = 0	May be on diagram or be implied	
D (1)))		B1
B(0, 12) or y = 7	12 (for <i>B</i>)	
anu 1		
(area $OAB =)$ 2	2 × their 6 × 12 or 36	
and		
$\frac{24}{\text{their 36}} \times 12$		
their 50		M1
v = 8		
<i>y</i> = 0	Only ft B0 M1	
		A1ft
B(0, 12) or y = 7	12 (for <i>B</i>)	
and 1		
(area $OAB =)$ $\overline{2}$	2 × their 6 × 12 or 36	
and		
$\frac{\text{their 30} - 24}{\text{their 26}} \times \text{th}$	neir 6	
their 30		M1
<i>x</i> = 2	- · · · · · · · · · · · · · · · · · · ·	
	Only ft B0 with 2 ^{rra} M1 gained	
	SC2 Answer (8, 2) with no valid working	
	SC1 B (0, 12) or $y = 12$ (for B)	A 1 <i>F</i> 4
		AIIt

[5]

M5.

m = 5

A1

$$3 = 5 \times 4 + c \text{ or } 3 = 20 + c$$

y - 3 = 5 (x - 4) or y - 3 = 5x - 20
oe
M1

SC1 for $y = -0.2 \times + 3.8$ (using the perpendicular gradient)

[3]

M6.		
	Scale on the y-axis identified correctly	
	e.g. Intercept of line <i>A</i> with <i>y</i> -axis identified as 2 oe <i>Must be unambiguous identification</i>	B1
	Scale on the <i>x</i> -axis identified correctly	
	e.g. Intercept of line <i>A</i> with <i>x</i> -axis identified as 2 oe Must be unambiguous identification	B1
	Correct attempt at gradient	
	e.g. their 5 their 6 <i>ft their scales</i>	M1
	$y = \frac{5}{6}x - 5$ or $6y = 5x - 30$ ft B0 B1 M1 or B1 B0 M1	

oe $\frac{6}{6}x - 5$ is B2 M1 A0

A1ft

[4]

M7.(a) 4*n* + 2

[4]

B1

B1

B1

(b) (4n, their 4n + 2)ft their (a) B1ft (c) y = x + 2oe all equations B1 y = mx + c with m = 1 or c = 2or 4n circled in (a) and y = xor 3x2 6n circled in (a) and y =or 3x2 + 2 6n + 2 circled in (a) and y =**B2**

M8.(a) C&O frequency = 5

Three tally marks in BBQ

(b) Key 1 circle represents 2 people *oe* Half circle represents 1 person One and a half circles represents 3 people

6 circles in Plain

[5]

and

2.5 circles in C&O B1 6 circles in Plain or 2.5 circles in C&O ft their fully completed key Only award B2ft if BBQ row is also correct for their key B1ft one row matching their key	B2ft
M9. Gradient of $AC = -2$ or $y = -2x + 4$	M1
$0 = \text{their} -2 \times 1 + c$	M1dep
c = 2 and $y = -2x + 2$	A1
Alternative method 1	
Line drawn parallel to AC passing through (0, 2) and B	M1
Calculating or stating gradient of both lines as -2	
eg $y = -2x + 2$ and $y = -2x + 4$	M1dep
Reference to intercept being 2 and stating $y = -2x + 2$	A1

Alternative method 2

Line drawn parallel to AC passing through (0, 2) and B

M1

Intercepts are (0, 2) and (1, 0) so equation is (y intercept) $\times x + (x \text{ intercept}) \times y = (y \text{ intercept}) \times (x \text{ intercept})$

Therefore (2) ×
$$x$$
 + (1) × y = (2)(1) \rightarrow 2 x + y = 2

A1

M1dep

[3]

Attempt to find y-intercept or the value of y when x = 0 $y = \frac{-4x}{3} - 4$

y = -4

3y + 12 = 0

M10.

May be seen on diagram

A1	

M1

M1

Gradient = $\frac{4}{6} \left(=\frac{2}{3}\right)$ or $\frac{0-(-4)}{6-0}$ oe ft their -4 Gradient must be positive

$$y = \frac{2}{3}x - 4$$

oe

SC3 for
$$y = \frac{-2}{3}x - 4$$
A1 ft

[4]

B1ft

M11.
$$A = (3, 0)$$
 B1

$$B = (0, 6)$$
 B1

$$C = (-3, 12)$$

ft from their A and B

$$C = (-3, 12)$$
 seen scores B3

$$DC = \frac{12 - 0}{-3 - (-7)} (= 3)$$

or

Uses y = mx + c and substitutes the coordinates of *D* and their *C*

oe 0 = 7m + c and 12 = -3m + cft their C

y = 3x + 21

oe

M12.B and D

B1 for 1 correct (and 1 incorrect) or 2 correct and 1 incorrect

[2]

B2

A1

M1

[5]

M13.Attempt to work out gradient

 $m = \overline{2}$ or c = 4 seen or implied

oe

oe

e.g $\frac{1}{2}x + 4$

Gradient = $\frac{1}{2}$ or Intercept = 4

1

 $y = \frac{1}{2}x + 4$

M1

M1

A1

M14. 7+6 or 1+12 oe

13

B = (4, 13) or C = (0, 13) seen is M1 A1

y = 3x + 13

SC1 y = 3x + c $c \neq 0$ and c > 0 but not c = l C = 3x + c $c \neq 13$ scores no marks SC2 for C = 3x + 13

A1

[3]