M1.

Alternative method 1

$$P(1, 3)$$
 or $y = 3$ or grad $OP = 3$

B1

grad
$$PQ = -\frac{1}{\text{their } 3} \text{ or } -\frac{1}{3}$$

M1

$$y = \left(\text{their } -\frac{1}{3}\right)x + c$$

and substitutes (1, their 3)

or

y - their 3 =
$$\left(\text{their } -\frac{1}{3}\right)(x-1)$$

oe
 $\frac{\text{their 3}}{x-1} \text{ or } -\frac{\text{their 3}}{x-1}$

M1dep

Substitutes y = 0 in their equation

$$-\frac{their \ 3}{x-1} = their - \frac{1}{3}$$

M1dep

A1

Alternative method 2

$$P(1, 3)$$
 or $y = 3$ or grad $OP = 3$

B1

$$\frac{\text{their 3}}{1} = \frac{QN}{\text{their 3}}$$

M1dep

their 3 x their 3 or 9

M1dep

$$tan PON = \frac{their 3}{1}$$

N is on the x-axis

PN is perpendicular to the x-axis

M1

A1

[5]

M2.

(a) Circle drawn, centre (0, 0), radius 4

B1

(b)
$$x^2 + y^2 = 16 \text{ or } x^2 + y^2 = 4^2$$

oe

B1

[2]