Mark schemes

Q1.

(a) 1.8 × 7 or 12.6

M1

12.60

SC1 for 1260

A1

(b) 1.8 ÷ 4 or 0.45 or 180 ÷ 4

$$4 \times 45 = 180$$

 $4 \times 0.45 = 1.8$

M1

45

A1 [4]

Q2.

$$y a \frac{1}{x}$$
 or $y = \frac{k}{x}$

oe
$$xy = k 2 a \frac{1}{5}$$
 or $2 = \frac{k}{5}$

M1

k = 10

oe
$$2 = \frac{10}{5}$$

A1

$$xy = 10$$
 or $y = \frac{10}{x}$ or $x = \frac{10}{y}$

A1

[3]

Q3.

(a)
$$y = \frac{k}{x^2} \text{ or } y \alpha = \frac{1}{x^2}$$
oe

M1

$$8 = \frac{k}{3^2}$$
 or $k = 72$

This mark is for substituting 8 and 3 into their proportionality equation

A1

$$y = \frac{72}{x^2} \text{ or } yx^2 = 72$$

$$oe \ eg \ \frac{y}{72} = \frac{1}{x^2}$$

A1

(b)
$$y = \frac{72}{12^2}$$

ft their equation from (a)

M1

$$\frac{1}{2}$$
 or 0.5

A1ft

[5]

Q4.

Alternative method 1

$$h = kv^2$$
 or $5 = k \times 10^2$
or $5 \div 10^2$ or $5 : 10^2$

M1

$$(k=)$$
 $\frac{1}{20}$ or $(k=)$ 0.05

or
$$h = \frac{1}{20} v^2$$
 or $h = 0.05v^2$

oe

Correct value for k

or correct equation in h and v

A1

oe
$$\frac{1}{20} \times 24^2 \text{ implies } M1A1M1$$

M1dep

28.8

ft their k and M1A0M1

A1ft

Alternative method 2

$$kh = v^2$$
 or $k \times 5 = 10^2$
or $10^2 \div 5$ or $10^2 : 5$
oe

M1

$$(k =) 20 \text{ or } 20h = v^2$$

oe

Correct value for k or correct equation or correct equation in h and v

A1

242 ÷ their 20

oe

24² ÷ 20 implies M1A1M1

M1dep

28.8

ft their k and M1A0M1

A1ft

Alternative method 3

$$\left(\frac{24}{10}\right)^2$$
 or $\frac{576}{100}$ or $24^2:10^2$

M1

$$\frac{h}{5} = \left(\frac{24}{10}\right)^2$$

oe

Correct equation in h

A1

$$5 \times \text{their} \left(\frac{24}{10}\right)^2$$

oe

$$5 \times \left(\frac{24}{10}\right)^2$$
 implies M1A1M1

M1dep

28.8

ft their
$$\left(\frac{24}{10}\right)^2$$
 and M1A0M2

A1ft

Alternative method 4

$$\left(\frac{10}{24}\right)^2$$
 or $\frac{100}{576}$ or $10^2: 24^2$

M1

$$\frac{5}{h} = \left(\frac{10}{24}\right)^2$$

oe

Correct equation in h

A1

$$5 \div \text{their} \left(\frac{10}{24}\right)^2$$

oe

$$5 \div \left(\frac{10}{24}\right)^2$$
 implies M1A1M1

M1dep

28.8

ft their
$$\left(\frac{24}{10}\right)^2$$
 and M1A0M1

A1ft

Additional Guidance

 $h \alpha v^2$ with no further valid working

Zero

$$h = kv$$
 or $h = kv^3$ or $h = \frac{k}{v^2}$ etc not recovered

Zero

Up to first two marks can be awarded for correct working even if not subsequently used

Allow use of other letters

[4]

Q5.

$$T = k^{-\sqrt{l}}$$

M1

$$1.6 = k^{-\sqrt{64}} \text{ or } 1.6 = k \times 8$$

M1

$$k = \frac{1.6}{\sqrt{64}} \text{ or } k = \frac{1.6}{8}$$
or $k = 0.2$
or $T = 0.2$

M1

$$(T =)$$
 their $0.2 \times \sqrt{132.25}$ or $(T =)$ their 0.2×11.5

Dependent on first two method marks

M1dep

2.3

ft their 0.2 if M1M1M0M1 scored

A1ft

[5]

Page 4 of 7

Q6.

(a)
$$w = 3.5y$$

or
 $w = ky$ and $k = 3.5$
oe

M1

31.5

A1

(b)
$$w \alpha^{\frac{1}{x^2}} \text{ or } w = \frac{\frac{k}{x^2}}{oe}$$

M1

$$5 = \frac{\frac{k}{2^2}}{2^2} \text{ or } k = 20$$
or
$$w = \frac{\frac{20}{x^2}}{e}$$
oe

oe

M1dep

0.2

B1

A1

(c) D

[6]

Q7.

(a) C

B1

(b)
$$y \quad \alpha \quad \sqrt{x} \quad \text{or} \quad y = k\sqrt{x}$$
 oe or $cy = \sqrt{x}$

B1

$$36 = k \sqrt{100}$$

or $k = 3.6$
or $y = 3.6 \sqrt{x}$

oe

$$36c = \sqrt{100}$$

or $c = \frac{5}{18}$ or 0.277...
or $\frac{5}{18} y = \sqrt{x}$

M1

$$3.6 \times \sqrt{250}$$
 or $56.9(...)$ oe
$$\sqrt{250} + \frac{5}{18}$$
 MI
$$57$$
 All
$$2 = k\sqrt{36} \text{ or } \sqrt{36} = 6$$
 MI
$$(k =) 2 + \text{their } 6 \text{ or } \frac{1}{3}$$
 MIdep
$$5 + \text{their } \frac{1}{3} \text{ or } 15 (\sqrt{a} =)$$
 oe MI
$$225$$
 Al
Alternative method 2
$$2k = \sqrt{36} \text{ or } \sqrt{36} = 6$$
 MI
$$(k =) \text{their } 6 + 2 \text{ or } 3$$
 MIdep
$$5 \times \text{their } 3 \text{ or } 15 (\sqrt{a} =)$$
 oe MI
$$4 \times \text{Midep} = \frac{1}{3} \times \text{Midep} = \frac{1}{3$$

Q8.

225

225

$$2k=\sqrt{36}$$
 or $\sqrt{36}=6$ M1 $5\div 2$ or 2.5 M1 their $6\times$ their 2.5 or $15(\sqrt{a}=)$ dep on M1 M1

M1dep

A1

Q9.

(a)
$$y \alpha \frac{1}{x^2} \text{ or } y = \frac{k}{x^2}$$

M1

$$20 = \frac{k}{2^2}$$

or
$$(k =) 2^2 \times 20$$

or
$$(k =) 80$$

or
$$\left(\frac{1}{k} = \right) \frac{1}{80}$$

M1dep

$$y = \frac{80}{x^2}$$

oe

A1

Additional Guidance

$$y \alpha \frac{k}{x^2}$$

M1

(b)
$$5 = \frac{80}{x^2}$$

or
$$x^2 = 16$$

oe

ft their equation from part (a)

M1

4

Condone 4 and -4

A1

[5]