Mark schemes

Q1.

Correct evaluation of a relevant power of 2 or 16

eg
$$16^{\frac{1}{2}} = (\pm) 4$$
 or $16^2 = 256$ or $2^4 = 16$ or

or 4c = d

$$16^{\frac{1}{4}} = (\pm)2$$
 or $16^{1} = 16$ or $16^{0} = 1$

M1

One correct pair of answers

A correct answer is such that d = 4c

A1

A second correct pair of answers

eg c = 0, d = 0
c = 1, d = 4 or c = -1, d = -4
c = 2, d = 8 or c =
$$\frac{1}{8}$$
, d = $\frac{1}{2}$ etc ...

A1

[3]

Q2.

(a)
$$\frac{1}{81^{\frac{1}{4}}}$$
 or $\frac{1}{\sqrt[4]{81}}$ or $\sqrt[4]{\frac{1}{81}}$

or
$$3^{-1}$$
 or $9^{-\frac{1}{2}}$

or
$$81^{\frac{1}{4}} = 3$$
 or $\sqrt[4]{81} = 3$

or
$$3^4 = 81$$

M1

 $\frac{1}{3}$

A1

Additional Guidance

M0A0

(b) Alternative method 1

$$(16 =) 2^4$$

or
$$(2^3)^{2x}$$
 or 2^{6x}

oe with consistent base 2

M1dep

$$(16 =) 2^4$$
 and $(2^3)^{2x}$ or 2^{6x}

M1dep

$$2^{4+6x}$$
 or $2^{2(2+3x)}$

A1

Alternative method 2

$$((4 \times 8^{x})^{2} =) (2^{2} \times 2^{3x})^{2}$$

oe index

M1

$$(2^{2+3x})^2$$

M1dep

$$2^{4+6x}$$
 or $2^{2(2+3x)}$

A1 [5]

Q3.

16

B1for
$$64^{\frac{1}{3}} = 4$$

B1for $\sqrt[3]{64 \times 64}$
B1for $\left(64^{\frac{1}{3}}\right)^2$ oe
B1for $\left(64^2\right)^{\frac{1}{3}}$ oe

B2

[2]

Q4.

(a) $\frac{1}{27}$

B2 for 27 or
$$\frac{1}{3}$$
 or $\frac{1}{729}$ or 27^{-1}

$$\frac{1}{\frac{3}{2}}$$
B1 for 3 or 729 or $9^{\frac{1}{2}}$ or -27

B3

(b)
$$2^{3m} \left(= 2^{m^2}\right) \text{ or } \left(2^3\right)^m \left(= 2^{m^2}\right)$$

M1

$$m^2 = 3m$$
 or $m^2 - 3m = 0$ or $m(m-3) = 0$
or $(m =) 0$ or $(m =) 3$

0 **and** 3

A1

[6]

Q5.

$$\frac{1}{3}$$
 or 0.33...

B1 3⁻¹ or
$$\frac{\sqrt{1}}{3}$$
 or $(\frac{1}{9})^{\frac{1}{2}}$ or $\sqrt{\frac{1}{9}}$ or $\sqrt{\frac{1}{9}}$ or $\sqrt{\frac{1}{9}}$

B2

Additional Guidance

For B1 responses $\frac{1}{2}$ can be 0.5

For final two B1 responses 1 can be $\sqrt{1}$

[2]

Q6.

(a) m^3

Do not accept $m \times m \times m$

B1

(b)
$$3 \times 5 + 5 \times \sqrt{2} - 3 \times \sqrt{2} - \sqrt{2} \times \sqrt{2}$$

or $3 \times 5 + 2 \sqrt{2} - \sqrt{2} \sqrt{2}$
or $13 + 5\sqrt{2} - 3\sqrt{2}$

oe 4 terms or correct combination of 3 terms needed. If 4 terms given, 3 must be correct for M1

Allow in 'box method' or FOIL but watch out for correct signs (still allow one error).

M1

 $13 + 2\sqrt{2}$

A1

Additional Guidance

If answer correct allow 2 marks.

$$15 + 5\sqrt{2} - 3\sqrt{2} + 4$$

M1

 $19 + 2\sqrt{2}$

 $\mathbf{A0}$

Page 3 of 7

×	3	√2
5	15	5√2
√2	3√2	2

M0

(Only two terms correct)

×	3	√2
5	15	5√2
-√2	3√2	2

M1

(Terms incorrect in table but 'recovered')

$$5 \times 3 = 15, \ 3 \times \sqrt{2} = 3\sqrt{2}, \ 5 \times \sqrt{2} = 5\sqrt{2}, \ -\sqrt{2} \times \sqrt{2} = -2$$

M1

 $\mathbf{A0}$

(c)
$$\frac{27}{5}$$
 or $5\frac{2}{5}$ or 5.4

 $\frac{1}{5}$ B2 for 27 and $\frac{5}{5}$

$$B2 \ for \ \frac{1}{5} \times 3^3$$

1 31 for 27 or

B1 for 5 and 3 seen

Additional Guidance

$$\frac{1}{5} \times 3^3 = \frac{1}{5} \times 9 = 1.8$$

B2

$$\frac{1}{5} \times 9 = 1.8$$

B1

$$\sqrt{25}$$
 = ±5 and $\sqrt[4]{81}$ = ±3 (allow a mixture or + and – for 3 and 5 but negative elsewhere not allowed)

B1

[6]

Q7.

 $101.4^{\frac{1}{2}}$ estimated as 10

condone - 10

 $(6.43^{\circ} =) 1$

B1

B1

 $7.99^{\frac{2}{3}}$ estimated as 4

B1

14

condone -6 if -10 used

ft fully correct evaluation with B2 scored

B1ft [4]

Q8.

(a) 5

B1

(b) 1

B1

(c) $\sqrt[3]{27}$ or 3

M1

$$\frac{1}{7^2}$$
 or $\left(\frac{1}{7}\right)^2$ or $\frac{1}{49}$

M1

A1

 $\frac{3}{49}$

[5]

Q9.

2

B1

$$\frac{1}{5^2}$$
 or $\frac{1}{25}$ or 0.04

25 scores B1M1

M1

0.08

A1

[3]

Q10.

 $\frac{1}{3}$

B1

[1]

Q11.

$$3x - (x - 5)$$

Condone omission of brackets

M1

$$2x + 5 = 17$$

M1

6

SC2 11

A1

Alternative 1

$$2^{3x} = 2^{17} \times 2^{x-5}$$

M1

$$3x = 12 + x$$

M1

6

SC2 11

A1

Alternative 2

Substitutes a value for x and evaluates correctly as a power of 2.

M1

Substitutes a different value for x and evaluates correctly as a power of 2 which is closer to 17.

M1

6

SC2 11

A1

[3]

Q12.

$$\frac{2}{x^{3}}$$
 or $a = -\frac{2}{3}$

$$B2(x^{\frac{1}{3}})^{2} \text{ or } (x^{2})^{\frac{-1}{3}} \text{ or } (x^{\frac{2}{3}})^{-1} \text{ or } (x^{-2})^{\frac{1}{3}} \text{ or } (x^{\frac{1}{3}})^{-2} \text{ or } \frac{1}{x^{\frac{2}{3}}} \text{ or } -\frac{2}{3}$$

$$B1(\sqrt[3]{x}3)^{-2} \text{ or } (\sqrt[3]{x^{2}})^{-1} \text{ or } (\frac{1}{x^{2}})^{\frac{1}{3}}$$

$$\text{or } \frac{1}{(x^{2})^{\frac{1}{3}}} \text{ or } (\frac{1}{\sqrt[3]{x}})^{2} \text{ or base } x \text{ with any negative index.}$$

В3

[3]