Q1.	63	
(a)	63	B 1
(b)	5(y + 1) or $5y + 5$	
	or $(4+1)(y+1)$ or $4y + 4 + y + 1$	B1
	Additional Guidance Condone $(4 + 1) \times (y + 1)$	B1
	Condone $5 \times (y + 1)$ or $5 \times y + 5$	B1
	Condone missing final bracket 5 × (y + 1	B1
	Do not ignore further incorrect work	
(c)	(x + 1)(y + 1)	
	or $x(y + 1) + y + 1$	
	or $y(x + 1) + x + 1$	
	or $xy + x + y + 1$	B1
	Additional Guidance Condone $(x + 1) \times (y + 1)$	B1
	Condone $x \times (y + 1) + y + 1$	B1
	Do not ignore further incorrect work	
(d)	(2x + 1)(y + 1)	
	or $2x(y+1) + y + 1$	
	or $y(2x + 1) + 2x + 1$	
	or $2xy + 2x + y + 1$	B1
	Additional Guidance Condone $(2x + 1) \times (y + 1)$	B1
	Condone $2x \times (y + 1) + y + 1$	

Q2.

(a)	511	B1	
	7 × 73 or 7 is a factor or 73 is a factor	B1	
(b)	Incorrect and 2 ⁵ – 1 : 2 ⁷ – 1 ≠ 5 : 7 or 31 : 127 shown	B1	[3]

Q3.

60

Q4.

105

B2 $a \times b \times c$ with two correct from 3, 7 and 5		
B1 $a \times b \times c$ with one correct from 3, 7 and 5		
or		
any two of 3, 7 and 5 possibilities identified for two of the digits		
	B3	
		[3]

Q5.

3 choices for 1st digit	M1	
3 × 4 × 3 × 2 (× 1)	Mldep	
72	Al	[3]

Q6.

Alternative method 1

1800

B2 a × b × c × d with at least 3 correct from 9, 10, 10 and 2 B1 a × b × c × d with at least 2 correct from 9, 10, 10 and 2 **B1**

[1]

[4]

	or identifies 9 possibilities for first digit or identifies 2 possibilities for final digit	B3	
Alternative method 2			
9000	The number of digits between 1000 and 9999 inclusive	M1	
their 9000 ÷ 5		M1dep	
1800		A1	