Calculator

Q1.

 $\overrightarrow{AB} = 2x$ and $\overrightarrow{BC} = 4y$ ACD is a straight line.

(a) Write down the vector \overrightarrow{AC} in terms of x and y.

nswer	
	(1)

(b) AC:CD=2:1

Work out the vector \overrightarrow{AD} in terms of x and y, Give your answer as simply as possible.

Answer_	

(2) (Total 3 marks) Q2.

Work out
$$\begin{pmatrix} -4 \\ -7 \end{pmatrix} - \begin{pmatrix} -5 \\ 3 \end{pmatrix}$$
 Circle your answer.

 $\begin{pmatrix} -9 \\ 4 \end{pmatrix} \qquad \qquad \begin{pmatrix} 1 \\ 4 \end{pmatrix} \qquad \qquad \begin{pmatrix} -1 \\ 4 \end{pmatrix} \qquad \qquad \begin{pmatrix} 1 \\ -10 \end{pmatrix} \qquad \qquad \begin{pmatrix} -9 \\ -10 \end{pmatrix}$

(Total 1 mark)

Q3.

$$\mathbf{a} = \begin{pmatrix} -4 \\ -1 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$

Circle the vector 2a + b

(Total 1 mark)

Q4.

WXYZ is a trapezium.

$$\overrightarrow{WX} = s$$

$$\overrightarrow{WZ} = \mathbf{t}$$

ZY : WX = 3 : 2

(a) Write vector \overrightarrow{ZY} in terms of **s**

Answer _____

(1)

(b) Work out vector \overrightarrow{XY} in terms of **s** and **t** Give your answer in its simplest form.

Answer _____

(Total 3 marks)

(2)

Q5.

Here are two column vectors.

$$f = \begin{pmatrix} 4 \\ 5 \end{pmatrix}$$
 $g = \begin{pmatrix} 5 \\ -2 \end{pmatrix}$

Work out 3**f** – 2**g**

Answer _____

(Total 2 marks)

Q6.

C is the midpoint of the straight line AB.

$$\overrightarrow{OA} = a$$

$$O\hat{B} = b$$

(a) Work out \overrightarrow{OC} in terms of **a** and **b**. Simplify your answer.

(3)

(b) Hence, write down an expression for \overrightarrow{co} in terms of **a** and **b**. Simplify your answer.

Answer		

(1)

Q7.

C is the midpoint of AB.

Not drawn accurately

$$\overrightarrow{OA} = 2a$$

$$\overrightarrow{OB} = 6\mathbf{b}$$

Work out \overrightarrow{OC} in terms of **a** and **b**.

Simplify your answer as far as possible.

(Total 4 marks)

Answer ___