Q1.

Alternative method 1

$$y = 5x - 5$$
MI
$$2(5x - 5) - x^{2} = 11 \text{ or} \\10x - 10 - x^{2} = 11$$
Eliminating a variable oe
MI
$$x^{2} - 10x + 21 = 0$$
Collecting terms
$$(x - 3)(x - 7) (= 0)$$

$$\frac{10 \pm \sqrt{(-10)^{2} - 4 \times 1 \times 21}}{2 \times 1}$$
MI
$$x = 3 \text{ and } x = 7$$
or
$$x = 3 \text{ and } y = 10$$
or
$$x = 7 \text{ and } y = 30$$
Alternative method 2
$$10x - 2y = 10$$
Equating coefficients
$$10x - x^{2} = 21$$
Eliminating a variable oe
$$x^{2} - 10x + 21 = 0$$

$$Collecting terms$$

$$(x - 3)(x - 7) (= 0)$$
Collecting terms
$$(x - 3)(x - 7) (= 0)$$
Collecting terms
$$(x - 3)(x - 7) (= 0)$$
Correct and accurate method to solve their 3-term quadratic equation
$$(x - 3)(x - 7) (= 0)$$
Correct and accurate method to solve their 3-term quadratic equation
$$(x - 3)(x - 7) (= 0)$$
Correct and accurate method to solve their 3-term quadratic equation
$$(x - 3)(x - 7) (= 0)$$

 $\frac{-(-40)\pm\sqrt{(-40)^2-4\times1\times300}}{2\times1}$

Eliminating a variable

Collecting terms

equation

oe

Q2.

(a) $(3x + 1)^2 = 9x^2 + 3x^2$	x + 3x + 1
--------------------------------	------------

x = 3, y = 10 and x = 7, y = 30

Correct and accurate method to solve their 3-term quadratic

x = 3 and x = 7

x = 3 and y = 10

x = 7 and y = 30

 $x = \frac{5 + y}{5}$

x = 3, y = 10 and x = 7, y = 30

Alternative method 3

 $2y - \left(\frac{5+y}{5}\right)^2 = 11$

 $y^2 - 40y + 300 = 0$

(y - 10)(y - 30) (= 0)

y = 10 and y = 30

x = 3 and y = 10

x = 7 and y = 30

or

or

or

or

B1

$$\frac{10 \pm \sqrt{(-10)^2 - 4 \times 1 \times 21}}{2 \times 1}$$

A1

A1

M1

M1

A1

M1

[6]

(b)) $9x^2 + 3x + 3x + 1 = 4x^2 - x + 7$ or $9x^2 + 6x + 1 = 4x^2 - x + 7$	
		B1
	$5x^2 + 7x - 6 = 0$	
	collected on one side of the equation	M1
	(5x - 3)(x + 2) (= 0) or $(5x + a)(x + b) (= 0)$	
	$ab = \pm 6$ or $5b + a = \pm 7$ ft their quadratic	
	or quadratic formula allowing one substitution error	M1
	x = 0.6 and $x = -2$ or $x = 0.6$ and $y = 2.8$	
		A1
	y = 2.8 and $y = -5$ or $x = -2$ and $y = -5$	
	oe	A1
00		
Q3. Al	ternative method 1	
<i>y</i> =	= -3 - 4x	B1
X²	+ $2x$ + 5 = their -3 - $4x$	M1
x²	+ 6x + 8 = 0	
	ft their $-3 - 4x$	Alft
(<i>x</i>	(x + 2) (= 0) Correct method to solve their quadratic equation	
	- 4 0	M1
<i>x</i> =	= -4, -2 ft their quadratic equation	Alft
1/ =	= 13 5	AIIt
y -	SC2 Both pairs of correct values without valid working	A1
Al	ternative method 2	
	$x_1 = 3 - v_1 + 2 = x_1 - 3 - v_1$	

 $x = \frac{(\text{their } \frac{-3-y}{4})^2 + 2(\frac{-3-y}{4})}{4}$

B1

[6]

$y = \frac{(\text{their } \frac{-3-y}{4})}{4}$	$)^{2} + 2(\frac{-3-y}{4}) + 5$	M1
y² – 18y + 65 = ($\frac{1}{4}$	
	oe may have common denominator 16	A1ft
(y – 5)(y – 13) (=	= 0) Correct method to solve their quadratic equation	M1
<i>y</i> = 13, 5	ft their quadratic equation	Alft
<i>x</i> = -4, -2	SC2 Both pairs of correct values without valid working	41
Alternative met	hod 3	A1
$4x + x^2 + 2x + 5$	= -3 oe	B1
$x^2 + 6x + 5 = -3$		M1
$x^2 + 6x + 8 = 0$		A1
(x + 4)(x + 2) (=	0) Correct method to solve their quadratic equation	M1
<i>x</i> = -4, -2	ft their quadratic equation	Alft
<i>y</i> = 13, 5	SC2 Both pairs of correct values with no valid working	
Alternative met	hod 4	AI
4x + y = -3 and		
$y - x^2 - 2x = 5$		
or		
4x + y = -3 and		

$-2x + y = x^2 + 5$	oe the equations must be used as simultaneous equations	B1
$4x + x^{2} + 2x = -8$ or $6x = -3 - x^{2} - 5$	8 or $x^2 + 6x = -8$	
	oe	M1
$x^2 + 6x + 8 = 0$		A1
(x + 4)(x + 2) (= 0)	0) Correct method to solve their quadratic equation	M1
<i>x</i> = -4, -2	ft their quadratic equation	A1ft
<i>y</i> = 13, 5	SC2 Both pairs of correct values with no valid working	A1

[6]

Q4.

Alternative method 1		
$x^2 - 6x - 20 = 4 - x$	M1	
$x^2 - 5x - 24 (= 0)$		
ft one error in collection of terms with all terms correctly collected on one side		
	M1	
(x-8)(x+3)(=0) or $(x+a)(x+b)(=0)$		
where $ab = \pm their 24$ or $a + b = \pm their 5$		
ft their quadratic		
or quadratic formula (allow one error)	M1	
x = 8 and $y = -4$ or $x = -3$ and $y = 7$		
	Al	
x = 8 and $y = -4$ and $x = -3$ and $y = 7$		
SC2 for both (8, -4) and (-3, 7) by trial and improvement		
SC1 for either (8, -4) or (-3 , 7) by trial and improvement	. 1	
	AI	

Alternative method 2

	$y = (4 - y)^2 - 6 (4 - y) - 20$		
	or $y = 16 - 8y + y^2 - 24 + 6y - 20$		
	or $y = y^2 - 2y - 28$ allow one error in rearrangement of $y = 4 - x$	M1	
	$v^2 - 3v - 28 (= 0)$		
-	ft one error in expansion and collection of terms with all terms correctly collected on one side	M1	
	(y - 7) (y + 4) (= 0) or $(y + a) (y + b) (= 0)where ab = \pm their 28 or a + b = \pm their 3$		
	ft their quadratic or quadratic formula (allow one error)	M1	
	y = -4 and $x = 8$ or $y = 7$ and $x = -3$	A1	
	y = -4 and $x = 8$ and $y = 7$ and $x = -3SC2 for both (8, -4) and (-3, 7) by trial and improvementSC1 for either (8, -4) or (-3, 7) by trial and improvement$	A1	
	Additional Guidance Substituting $x = y - 4$ into quadratic is two errors in rearrangement of $y = 4 - x$	M0	
	Substituting $x = y - 4$ into quadratic followed by collection of terms with all terms correctly collected on one side $y^2 - 15y + 20$ (= 0) (allow one error)		
	Substituting $x = y - 4$ into quadratic		
ł	followed by $y^2 - 15y + 20 (= 0)$		
i	followed by attempt to factorise quadratic where $ab = \pm$ their 20 or $a + b = \pm$ their 15 M01	M1M1	
Q5.			
	(a) Draws $y = 3x$		
	(x =) [-0.1, 0.1] and $(x =)$ [1.4, 1.6] B1 Draws $y = 3x$ or states $y = 3x$		

 $\pm \frac{1}{2}$ square tolerance for drawing graph Graph must be seen for *x* values from 0 to 1.5 [5]

Additional Guidance

Ignore any y values seen

Solutions from a non-graphical method

Ignore other lines drawn on grid

(b) Full evaluation of method and answer

eg1 Cannot divide by x as it could be zero eg2 Should have factorised and then he would have also found that x = 0eg3 Should have used the formula and then he would have also found that x = 0eg4 Should have used a graphical method then he would have also found that x = 0eg5 Should have completed the square then he would have also found that x = 0B1 Partial evaluation eg1 x = 0 has been omitted eg2 Should have factorised eg3 Should have used the formula eg4 Should have drawn a graph

- eg5 Only found one solution
- eg6 Cannot divide by zero

Additional Guidance

For B2 there needs to be an evaluation of the method and an indication that x = 0 has been omitted from the answer

x(2x + 5) = 0 x = 0 and $x = -2.5$	
	B2
Should be two solutions	B1
What about $x = 0$	B1
<u>-</u>	
The answer is wrong	B0
Ignore non-contradictory further work	

 $(4 - x)^2 = 4x + 5$

B0

B2

[4]

M1dep

M1

A1

$$x^2 - 12x + 11 (= 0)$$

oe Must be 3 terms

$$(x - 11)(x - 1) (= 0)$$

$$\frac{-12 \pm \sqrt{(-12)^2 - 4(1)(11)}}{2} \quad or$$

$$(x - 6)^2 - 36 + 11 = 0 \quad oe$$
M1

$$x = 11$$
 and $x = 1$
Must have M3 to ft
 $x = 11$ and $y = -7$ or $x = 1$ and $y = 3$
Alft

$$x = 11 \text{ and } y = -7$$
 and
 $x = 1 \text{ and } y = 3$

Alternative method

$$y^2 = 4(4 - y) + 5$$

$$y^2 = 16 - 4y + 5$$

Allow one error but must be a quadratic in y

$$(y+7)(y-3) (= 0) = \frac{-4 \pm \sqrt{4^2 - 4(1)(-21)}}{2}$$
 or
$$(y+2)^2 - 4 - 21 = 0 \quad \text{oe}$$
 M1

$$y = -7$$
 and $y = 3$
Must have M3 to ft
 $x = 11$ and $y = -7$ or
 $x = 1$ and $y = 3$
A1ft
 $x = 11$ and $y = -7$ and

[6]

Q7.

Q8.

y = 2 + xx = y - 2

$$2x^{2} + 5x + 1 = \text{their} (2 + x)$$

oe
$$y = 2(y - 2)^{2} + 5(y - 2) + 1$$

$$2y^{2} - 8y + 8 + 5y - y - 10 + 1 = 0$$

M1

B1

[6]

$$2x^{2} + 4x - 1 = 0$$

$$2y^{2} - 4y - 1 = 0$$
Midep
$$\frac{-4 \pm \sqrt{4^{2} - (4 \times 2 \times -1)}}{2 \times 2}$$
or
$$\frac{-4 \pm \sqrt{24}}{4}$$

$$\frac{-4 \pm \sqrt{(-4)^{2} - (4 \times 2 \times -1)}}{2 \times 2}$$
or
$$\frac{4 \pm \sqrt{24}}{4}$$
Mi
$$x = -2.2(...) \text{ and } x = 0.2(...)$$

or
$$x = 0.2(...)$$
 and $y = 2.2(...)$
 $y = 2.2(...)$ and $y = -0.2(...)$
or $y = 2.2(...)$ and $x = 0.2(...)$
or $y = -0.2(...)$ and $x = -2.2(...)$

$$x = -2.2$$
 and $y = -0.2$
and $x = 0.2$ and $y = 2.2$
 $y = 2.2$ and $x = 0.2$

BEWARE, roots of $2x^2 + 5x + 1 = 0$ are -0.22 and -2.28

and y = -0.2 and x = -2.2

Correctly substituting their values from their quadratic scores M1, e.g. $2x^2 + 5x + 1 = 0$

$$\frac{-5\pm\sqrt{5^2-(4\times2\times1)}}{2\times2}$$
 score

scores M0M0M1A0A0

All four solutions are required to score full marks

Q9.

Alternative method 1

 $2x^2 + 7x - 1 = 4x + 1$ Eliminates a variable [6]

A1

$2x^2 + 3x - 2 = 0$		
or $2x^2 + 3x = 2$	Correctly reduces to three terms	M1dep
(2x - 1)(x + 2) (=	0) If quadratic formula used here it must be fully correct	M1dep
$x = \frac{1}{2}, x = -2$		
or $x = \frac{1}{2}, y = 3$		
or <i>x</i> = – 2, <i>y</i> = –7	, SC3 if from T & I and 2 nd answer not obtained	A1
$x=\frac{1}{2},y=3$		
and $x = -2, y =$	-7	A1
Alternative metry $y = 2\left(\frac{y-1}{4}\right)^2 + $	$rod 2$ $7\left(\frac{y-1}{4}\right) - 1$	
	Eliminates a variable	M1
$y^2 + 4y - 21 = 0$		
or $y^2 + 4y = 21$	Correctly reduces to three terms	M1dep
(y - 3)(y + 7) (= 0)	0) If quadratic formula used here it must be fully correct	M1dep
<i>y</i> = 3, <i>y</i> = - 7		
or $y = 3, x = \frac{1}{2}$		
or $y = -7, x = -7$	2 SC3 if from T & I and 2 nd answer not obtained	A1
$y = 3, x = \frac{1}{2}$		
and $y = -7, x =$	- 2	

A1