Mark schemes

Q1.

(a) 5, 9, 13, 17, 21 seen

allow one error or omission

M1

$$5 + 9 + 13 + 17 + 21 = 65$$

A1

(b) 4n + 1

oe

B1
$$4n (\pm k)$$

B2

Additional Guidance

$$4 \times n + 1$$

is B2

$$4 \times n (+ k)$$

is B1

[4]

Q2.

n and n + 1 seen

Two consecutive integers expressed algebraically, eg n-1 and n

M1

 $(n + 1)^2 - n^2$

Subtraction of their consecutive integers squared

M1dep

 $n^2 + 2n + 1 - n^2$

Correct expansion

A1

Q1

2n + 1 and explanation why this expression must be odd

Strand (i). Explanation why their expression must be odd

[4]

Q3.

(a) -2, 1, 6

B1 for two correct terms

B2

(b) 8x - 5 - 1

$$2(ax + b) + 1 = 8x - 5$$

or
$$2n + 1 = 8x - 5$$

M1

$$\frac{\text{their}(8x-5-1)}{2}$$

$$2ax + 2b + 1 = 8x - 5$$

or $2a = 8$ and $2b + 1 = -5$
or $a = 4$ and $b = -3$

M1

4x - 3

4x - 3

A1

[5]

Q4.

Alternative method 1

Second differences 8

Implied by 4n2

M1

Any three values from

M1dep

$$4n^2 + 3n - 5$$

oe

Allow
$$a = 4$$
 $b = 3$ $c = -5$

A1

Alternative method 2

$$a + b + c = 2$$

$$4a + 2b + c = 17$$

$$9a + 3b + c = 40$$

$$16a + 4b + c = 71$$

Using $an^2 + bn + c$

M1

Any 2 equations in 2 unknowns

e.g.
$$3a + b = 15$$

$$5a + b = 23$$

$$7a + b = 31$$

$$8a + 2b = 38$$

$$12a + 2b = 54$$

$$15a + 3b = 69$$

Correctly eliminates the same letter using two different pairs of equations

M1dep

$$4n^2 + 3n - 5$$

oe

Allow
$$a = 4b = 3c = -5$$

Alternative method 3

Second differences 8

a = 4

or c = 2 - 7 or -5

Using $an^2 + bn + c$

M1

A1

3a + b = 17 - 2

and substitutes their a

oe e.g. b = 3

May also see a + b + c = 2 used to work out c

M1dep

 $4n^2 + 3n - 5$

oe

Allow a = 4b = 3c = -5

A1

Additional Guidance

Sequence (-5) 2 17 40 77 1st differences are (7) 15 23 31 2nd differences are 8 8 8

[3]

Q5.

 $(5n - 3)^2 + 1$

M1

 $25n^2 - 15n - 15n + 9 + 1$

Allow one error

Must have an n² term

M1

 $25n^2 - 30n + 10$

A1

 $5(5n^2 - 6n + 2)$

oe

e.g. shows that all terms divide by 5 or explains why the expression is a multiple of 5

B1ft

Alternative method 1

Use of $an^2 + bn + c$ for terms of quadratic sequence

i.e. any one of a + b + c = 5

$$4a + 2b + c = 50$$

 $9a + 3b + c = 145$

M1

3a + b = 45

5a + b = 95

For eliminating c

M1

 $25n^2 - 30n + 10$

A1

 $5(5n^2 - 6n + 2)$

oe

e.g. shows that all terms divide by 5 or explains why the expression is a multiple of 5

B1ft

Alternative method 2

5 50 145 290

45 95 145

2nd difference of $50 \div 2 (= 25)$

 $25n^{2}$

M1

Subtracts their $25n^2$ from terms of sequence

-30n

M1

 $25n^2 - 30n + 10$

A1

 $5(5n^2 - 6n + 2)$

oe

e.g. shows that all terms divide by 5 or explains why the expression is a multiple of 5

B1ft

[4]

Q6.

First and second differences correct

2 2 (2)

M1

Correctly subtracts their $\frac{1}{2} n^2$ from given sequence

M1

(1)n

dep on M2

M1dep

$$n^2 + n + 9$$

oe e.g.
$$n^2 + n + 10 - 1$$

A1

Alternative method

Any three of

$$a + b + c = 11$$

$$4a + 2b + c = 15$$

$$9a + 3b + c = 21$$

$$16a + 4b + c = 29$$

$$25a + 5b + c = 39$$

Allow one error but each of their three equations must have $a,\,b$ and c

M1

Eliminates one variable to obtain a pair of equations in two variables

e.g. 3a + b = 4 and

5a + b = 6

Allow one error

M1

Eliminates one variable correctly

e.g. 2a = 2

dep on M2

M1dep

A1

 $n^2 + n + 9$

oe e.g. $n^2 + n + 10 - 1$

Q7.

1 4 9 16

B1

[1]

[4]