(a)

Q1.

 $12x^2 + 18x - 2x - 3$ Must have four terms, one in x^2 , 2 in x and a constant term. 3 terms correct Terms may be in box method but must have correct signs

 $12x^2 + 16x - 3$

Additional Guidance

$8x^2 + 18x - 2x - 3$	
	M1

 $12x^2 + 18x + 2x - 3$ M1

$$8x^2 + 18x + 2x - 3$$
 M0

$$12x + 18x - 2x - 3$$
 M0

	6 <i>x</i>	-1
2 <i>x</i>	$12x^{2}$	-2 <i>x</i>
3	18 <i>x</i>	-3

	-	
	6 <i>x</i>	-1
2 <i>x</i>	$12x^{2}$	2 <i>x</i>
3	18 <i>x</i>	3

M1 (but can be recovered)

M1

A1

M1

(b) Alternative method 1

$$(ax \pm c)(bx \pm d)$$

 $ab = 4$ and $cd = \pm 3$
(4x - 3)(x + 1)
A1
 $\frac{3}{4}$ and -1

ft their brackets if M1 awarded

A1ft

Alternative method 2

$$\frac{-1\pm\sqrt{1^2-4\times4\times-3}}{2\times4}$$

Allow one error from wrong sign for -b, wrong signs for -4ac, b^2 as -1

Do not accept wrong formula, ie + not ±, 2 not 2a or only dividing root by 2a

$$\frac{-1\pm\sqrt{49}}{8}$$

 $\frac{3}{4}$ and -1

oe ft on wrong sign for
$$-b$$
 only eg $-\frac{3}{4}$ and -1

Alternative method 3

$(x+\frac{1}{8})^2 = \frac{49}{64}$	
	M1
$x = \pm \sqrt{\frac{49}{64}} - \frac{1}{8}$	
2	A1
$\frac{3}{4}$ and -1	
oe	

Alternative method 4

Writes $x^2 + x - 12$ and writes

$$\left(x \pm \frac{a}{4}\right) \left(x \pm \frac{b}{4}\right) \text{ where } ab = -12$$

$$(4x \pm 4)(4x \pm 3)$$
M1

$$\left(x+\frac{4}{4}\right)\left(x-\frac{3}{4}\right)$$

oe eg (4x + 4)(4x - 3)

A1

A1ft

M1

A1

Page 2 of 14

$$\frac{3}{4} \text{ and } -1$$

or fitheir brackets if M1 awarded

After

Additional Guidance

 $(2x-1)(2x+3), \frac{1}{2} \text{ and } -1\frac{1}{2}$

 $(2x-1)(2x+3), \frac{1}{2} \text{ and } -1\frac{1}{2}$

 $1\pm \sqrt{1^2 - 4 \times 4 \times -3}, -\frac{3}{4} \text{ and } 1$

 $(4x+3)(x-1), -\frac{3}{4} \text{ and } -1$

 $(4x+3)(x-1), -\frac{3}{4} \text{ and } -1$

 $(4x+3)(x-1), -\frac{3}{4} \text{ and } -1$

 $(x+2)(x-6)$

 $(x+2)(x-6)$

 $1\frac{1}{2} \text{ and } -\frac{1}{2}$

After

3.

use of $(x - 4)^2$ M1

$(x - 4)^2 - 16 (+ 20)$	
	A1

$(x-4)^2 - 16 + 20 = (x-4)^2 + 4$	
Strand (ii)	
Complete and correct algebraic explanation	
	Q1

Alternative method 1

use of ($(x - 4)^2$
----------	-------------

Q2.

Q3.

M1

[5]

[1]

$(x-4)^2 + 4 = x^2 - 8x + 20$	
Strand (ii)	
Complete and correct algebraic explanation	
	Q1

Alternative method 2

$$x^2 - ax - ax + a^2 (+a)$$
 M1

$$a = 4$$

Also $4^2 + 4 = 20$

Strand (ii)

Complete and correct algebraic explanation

Q1

Q4.

(a)	Alternative method 1 $(x-5)^2$	
		M1
	$(x-5)^2 - 13$ or $a = 5$ and $b = -13$	A1
	Alternative method 2 $x^2 - 2ax + a^2 + b = x^2 - 10x + 16$	
	or $2a = 10$ or $a = 5$ or $b = -13$	M1
	$(x-5)^2 - 13$ or $a = 5$ and $b = -13$	A1
(b)	2	DI

Q5.

Alternative method 1

x(x + 2) or $x^2 + 2x$ or $2x \times 4$ or 8x **B1**

[3]

A1

[5]

x(x + 2) or $x^2 + 2x$ and $2x \times 4$ or 8xand 4(x + 2) or 4x + 8oe eg $\frac{x(x+2) - 2x \times 4}{4(x+2)}$ M1dep $x(x + 2) - 2x \times 4 = 4(x + 2)$ oe equation with fractions eliminated dep on M2 M1dep $x^2 - 10x - 8 (= 0)$ oe 3-term quadratic equation with terms collected A1 $\frac{--10\pm\sqrt{(-10)^2-4\times1\times-8}}{2\times1}$ or $\frac{10 \pm \sqrt{100 + 32}}{2}$ or $\frac{10 \pm \sqrt{132}}{2}$ or $5 \pm \sqrt{5^2 + 8}$ or $5 \pm \sqrt{33}$ or [10.744, 10.745] and [-0.745, -0.744] oe Correct for their 3-term quadratic Allow correct factorisation of their 3-term quadratic **M1** 10.74 and -0.74 with $x^2 - 10x - 8$ (= 0) oe seen Must both be to 2 decimal places A1 Alternative method 2 (from $\frac{x}{4} - 1 = \frac{2x}{x+2}$) x(x + 2) or $x^2 + 2x$

or (x + 2) + 2x or 3x + 2or 12x + 8

or

4(x + 2) or 4x + 8

M1

M1

$\frac{x(x+2)}{4}$ or $\frac{x^2+2x}{4}$	
and	
$\frac{x+2+2x}{x+2}$ or $\frac{3x+2}{x+2}$	M1dep
x(x + 2) = 4(x + 2 + 2x) or	
x(x+2) = 4(3x+2)	
oe equation with fractions eliminated	
dep on M2	M1dep
$x^2 - 10x - 8 (= 0)$	
oe 3-term quadratic equation with terms collected	A1
$-10 \pm \sqrt{(-10)^2 - 4 \times 1 \times -8}$	
2×1	
or $\frac{10 \pm \sqrt{100 + 32}}{2}$ or $\frac{10 \pm \sqrt{132}}{2}$	
or $5 \pm \sqrt{5^2 + 8}$ or $5 \pm \sqrt{33}$	
or	
[10.744, 10.745] and [–0.745, –0.744]	
Correct for their 3-term quadratic	
Allow correct factorisation of their 3-term quadratic	
	M1
10.74 and -0.74	
with $x^2 - 10x - 8$ (= 0) oe seen	
Must both be to 2 decimal places	A1
Alternative method 3 (from $\frac{x}{4} - 1 = \frac{2x}{x+2}$)	
x-4	
4	M1
$(x - 4)(x + 2) = x^2 - 4x + 2x - 2$	
$(x - 4)(x + 2)$ or $x^2 - 4x + 2x - 8$ or $x^2 - 2x - 8$	
and 2x × 4 or 8x	
	M1dep

$(x-4)(x+2) = 2x \times 4$	
$x^2 - 4x + 2x - 8 = 8x$	
oe equation with fractions eliminated	
dep on M2	
M10	dep
$x^2 - 10x - 8 (= 0)$	
oe 3-term quadratic equation with terms collected	
	A1
$10 \pm \sqrt{(-10)^2 - 4 \times 1 \times -8}$	
2×1	
or $\frac{10 \pm \sqrt{100 + 32}}{10 \pm \sqrt{132}}$ or $\frac{10 \pm \sqrt{132}}{10 \pm \sqrt{132}}$	
2 2	
or $5 \pm \sqrt{5^2 + 8}$ or $5 \pm \sqrt{33}$	
or	
[10.744, 10.745] and [–0.745, –0.744]	
oe	
Correct for their 3-term quadratic	
Allow correct factorisation of their 3-term quadratic	M1
10.74 and -0.74	
with $x^2 - 10x - 8 (= 0)$ oe seen	
Must both be to 2 decimal places	A1
Additional Guidance	
10.74 and –0.74 from T & I or with no working	
6 ma	rks
10.74 or –0.74 from T & I or with no working	
Z	lero
In quadratic formula, do not allow -10^2 for $(-10)^2$ unless recovered	

M1

[6]

oe

 $\frac{x-1}{(x-2)(x-1)} - \frac{x-2}{(x-2)(x-1)}$

or x - 1 - (x - 2)or 2(x - 2) (x - 1)or $x^2 - 2x - x + 2$

Q6.

or 2(<i>x</i> ² – 2 <i>x</i> – <i>x</i> –	+ 2)		
	oe		
		M1dep	
$2x^2 - 6x + 3 (= 0)$)		
·	oe Must be three terms		
		A1	
$6\pm\sqrt{(-6)^2-(4+1)^2}$	× 2× 3)		
2×2			
or $\frac{6 \pm \sqrt{12}}{4}$			
	oe		
	Allow one error, ft their quadratic		
		M1	
$\frac{6\pm\sqrt{(-6)^2-(4)}}{2\times 2}$	× 2× 3)		
or $\frac{6 \pm \sqrt{12}}{4}$			
	ft their quadratic, fully correct		
	oe		
	2.366() and 0.633()	A 1 G	
		AIII	
2.37 and 0.63			
	SC2 for one correct answer to 2 dp		
	SC1 for one correct answer to 3 dp or more	Alft	
Additional Guid	Additional Guidance		
T&I with two correct answers to 3 dp or more loses final A mark			
ft is from <i>their</i> qu	ft is from <i>their</i> quadratic (must have three terms)		
One error is an i	ncorrect substitution in one position or a short divisor line		

Q7.

 $x^{2} - cx - cx + c^{2}$ or $x^{2} - 2cx + c^{2}$ or $a = c^{2}$ or 12 = 2cor 12x = 2cxor -12x = -2cx

M1

[6]

A negative discriminant can score M1A1ftA0ft for an attempt at a solution

A1

A1ft

a = 36 ft their c^2

Alternative Method

ft their

$(x-6)^2 + a - 36$		
		M1

a = 36

[3]

Q8.

(a)	Alternative method 1	
	$(x + 3)^2 + \dots$ or $a = 3$	M1
	$(x + 3)^2 + 1$	
	Accept $a = 3$ and $b = 1$	A1
	Alternative method 2	
	$2a = 6$ and $a^2 + b = 10$	M1
	$(x + 3)^2 + 1$	
	Accept $a = 3$ and $b = 1$	A1
(b)	(-3, 1)	

oe			
ft their a	and	their	b

B1ft [3]

Q9.

```
x^2 + ax + ax + a^2 (-7)
or x^2 + 2ax + a^2 (- 7)
or 2ax = 10x
or 2a = 10
or a = 5
```

or
$$a^2 - 7 = b$$

or $(x + 5)^2$
 $a = 5$ and $b = 18$
Additional Guidance
 $(x + 5)^2 - 7 = x^2 + 10x + 18$
 $a = 7$ and $b = 18$
(a) $(x - 5)^2$ or $2a = 10$ or $a = 5$
or $a^2 + b = 29$
(b) Alternative method 1
 $(x - 3)^2 + 5$
 $x^2 - 3x - 3x + 9 + 5$
or $x^2 - 6x + 14$
Correct expansion of their $(x + m)^2 + n$
 $c = -6$ and $d = 14$
Alternative method 2
 $\left(x + \frac{c}{2}\right)^2 + d = -\frac{c^2}{4}$
Equates coefficients for their $(x + a)^2 + b$
MI

$$hc = -6$$
 and $d = 14$

[2]

 $6x^2 + 20x + 12 (= 0)$

 $\frac{-20\pm\sqrt{20^2-4\!\times\!6\!\times\!12}}{2\!\times\!6}$

or $\frac{-10 \pm \sqrt{10^2 - 4 \times 3 \times 6}}{2 \times 3}$

 $\frac{-20\pm\sqrt{20^2-4\times6\times12}}{2\times6}$

or $\frac{-10 \pm \sqrt{10^2 - 4 \times 3 \times 6}}{2 \times 3}$

oe

oe

fully correct

Allow one error

-2.548... or -0.784... Strictly ft their quadratic

$$\begin{array}{c} 6(2x+5) + 1(x+3) \text{ or } 3(x+3)(2x+5) \\ oe \\ May \text{ be seen as part of a fraction or fractions with} \\ denominator (x+3)(2x+5) \\ 6(2x+5) + 1(x+3) = 3(x+3)(2x+5) \\ oe \end{array}$$
M1

or

$$3x^2 + 10x + 6 (= 0)$$

Simplifying the expression to three terms

A1

M0

[5]

M1

A1ft

A1

Additional Guidance

-0.78 and -2.55

One correct solution to 2 or more dp implies 4 marks

Two correct solutions to more than 2 dp implies 5 marks

 $3x^2 + 10x = -6$

ft their quadratic for the 4th and 5th marks

If no real roots M1A1ft can still be awarded

If quadratic factorises, must see correct factors for M1 and correct solutions for A1ft

If quadratic does not factorise, attempt to factorise scores M0

"Their quadratic" must be in the form $ax^2 + bx + c$ (= 0) or equivalent, no credit for solving a quadratic embedded within fractions etc

Q12.

Alternative method 1

 $5x^{2} - 10x - 4 (= 0)$ or $-5x^{2} + 10x + 4 (= 0)$ If no rearrangement seen implied by a = 5, b = -10, c = -4or a = -5, b = 10, c = 4seen or used correctly

$$\frac{-10\pm\sqrt{(-10)^2-4\times5\times-4}}{2\times5}$$

ft their 3-term quadratic (equation) **seen** Allow one sign error Allow 10² for (-10)² (do not count as a sign error) Allow recovery of invisible brackets

Conceptual error (omission of square root, incomplete square root symbol, ± not included, short fraction line) is M0 unless recovered

M1

B1

$$\frac{--10 \pm \sqrt{(-10)^{2} - 4 \times 5 \times -4}}{2 \times 5}$$

or $\frac{10 \pm \sqrt{100 + 80}}{10}$
or $\frac{10 \pm \sqrt{180}}{10}$ or $\frac{10 \pm 6\sqrt{5}}{10}$
or 2.341(...) or 2.342
and -0.341(...) or -0.342
Fully correct substitution

10 1 1/ 102 1 5 1

ft their 3-term quadratic (equation) seen
oe eg $\frac{5\pm 3\sqrt{5}}{5}$
5
Allow recovery of invisible brackets
Two correct solutions $> 2 dp$ for their 3-term quadratic
equation

2.34 and -0.34

ft B0M1A1ft ft answers must be rounded to 2 dp

Alternative method 2

$$5(x^{2}-2x-\frac{4}{5})(=0)$$

or $x^{2}-2x-\frac{4}{5}(=0)$
or $5(x^{2}-2x)=4$ or $x^{2}-2x=\frac{4}{5}$

May be implied

$$5[(x-1)^{2} - 1^{2} - \frac{4}{5}](=0)$$

or $(x-1)^{2} - 1^{2} - \frac{4}{5}(=0)$
or $5[(ac-1)^{2} - 1^{2}] = 4$
or $(x-1)^{2} - 1^{2} = \frac{4}{5}$
ft their 3-term quadratic (equation) seen
Allow one sign error but $(x - 1)^{2}$ must be correct
MI
$$1 \pm \sqrt{1^{2} + \frac{4}{5}}$$

or 2.341(...) or 2.342
and $-0.341(...)$ or -0.342
Fully correct
ft their 3-term quadratic (equation) seen
 $oe eg \frac{5 \pm 3\sqrt{5}}{5}$
Two correct solutions > 2 dp for
their 3-term quadratic equation seen
Alft
2.34 and -0.34
ft BOM1A1ft

ft answers must be rounded to 2 dp

A1ft

A1ft

A1ft

B1

Additional Guidance

Do not count a sign error in a (or b) as two sign errors eg If a should be -5 but a = 5 is used in both $4ac$ and $2a$, only count as one sign error		
inal A1 mark can be awarded if both answers seen in working but only one is written on Inswer line		
$5x^2 + 10x - 4 (= 0)$ seen with solutions -2.34 and 0.34 (no incorrect method seen) B0M1A1ftA1ft		
$5x^2 - 10x + 4 (= 0)$ seen with solutions 0.55 and 1.45 (no incorrect method seen) B0M1A1ftA1ft		
$5x^2 + 10x + 4 (= 0)$ seen with solutions -0.55 and -1.45 (no incorrect method seen) B0M1A1ftA1ft		
Note that the pairs of solutions seen in the three rows above can come from incorrect method so will not always score 3 marks		
2.34 and −0.34 with no working or from T & I 4 marks		
2.34 or -0.34 with no working or from T & I Zero		
2.3 and/or –0.3 with no working or from T & I Zero		

[4]