Mark schemes

Q1.

(a)
$$-\frac{3}{2}$$

B1

(b)
$$\frac{4}{3}$$

B1

[2]

Q2.

$$y = 3x$$
 and $y = 3x + 1$

B1
$$y = 3x$$
 and $y = 3x + 1$ and one incorrect

or

$$y = 3x$$
 or $y = 3x + 1$ and none or one incorrect

B2 [2]

Q3.

(C has coordinates) (2, 4)

B1

(Gradient =) -2

Implied by
$$y = -2x \dots$$

В1

$$\frac{-1}{\text{their gradient}} \quad \text{or (Gradient =)} \quad \frac{1}{2}$$

Implied by
$$y = \frac{1}{2}x$$
 ...

M1

their 4 = their
$$\frac{1}{2}$$
 × their 2 + c or c = 3

M1

$$y = \frac{1}{2} x + 3$$

oe
$$y^{-\frac{1}{2}}$$
 (x + 6)

ft their coordinates of C and their initial gradient if M1M1 scored

A1ft

Additional Guidance

(Gradient =) $\frac{1}{2}$ or $y = \frac{1}{2}$ x ... implies the second B mark and the first M mark.

[5]

Q4.

(Gradient of
$$PQ = \frac{-4}{7}$$

Allow 0.57 or better for $\frac{4}{7}$

B1

$$0 = \frac{-4}{7} \times 14 + K$$

$$(K =) 14 \times their \frac{4}{7} \text{ or } -14 \times their \frac{-4}{7} (= 8)$$

8 marked at the *y*-intercept ft non-integer gradient

M1

$$y = \frac{-4}{7}x + 8$$

ft non-integer gradient

A1ft

$$4x + 7y = 56$$

oe

 $\it ft$ their equation with a non-integer coefficient of $\it x$ and M1 awarded

A1ft

[4]