Mark schemes

Q1.

(a)
$$(x + a)(x + b)$$

where $ab = \pm 24$

$$(x + 8)(x - 3)$$

either order A1

(b)
$$(x =) - 8$$
 and $(x =) 3$
ft their part (a)
B1 ft

A1

B1

[3]

Q2.

(a) x + 7.5 or 7.5 + x $x + 7 \frac{1}{2}$

(b)	x(x + 7.5) = 2(x + x + 7.5)	
	ft their x + 7.5 from (a) in the form x + c for all 4 method marks	
	marks	M1

x^2 + 7.5 x = 4 x + 15	
	M1

$$x^2 + 3.5x - 15 = 0$$

or

$$2x^2 + 7x - 30 = 0$$
 M1

$$(2x-5)(x+6) (= 0)$$
 M1

and

A1

Q3.

[6]

	$(x^2 + 2x - 3) - (x$	$x^{2} + x - 3$)		
	. , .	Or attempt to 'balance' equations	M1	
	y = x		A1	
	- 2.3 and 1.3	ft if M awarded and their line drawn	Alft	[3]
Q4	ŀ.			
	(x - 3)(x + 3)	Substitutes any value for x into both expressions but not $x = 0$	M1	
	(x - 3)(x + 5)	Sets up a correct equation in b	M1dep	
	$(b =) 2 \text{ or } x^2 + 2x$	c – 15	A1	[3]
Q	5.			
	(x + 4)(x - 5) (=	90)	M1	
	$x^2 + 4x - 5x - 20$	(= 90) Allow 1 error	M1	
	$x^2 - x - 110$ (= 0) Collecting their 4 terms and 90 dependent on 2 nd M1 only	M1dep	
	(<i>x</i> + 10)(<i>x</i> - 11)	$(x + a)(x + b)$ where $ab = \pm$ their 110	·	
	11		M1	
		Note: 11 and – 10 implies M4A0	A1	[5]

Q6.

(a) $x^2 - 4x + 5x - 20$

$$x^2 + x - 20$$
 A1

[3]

M1

Q7.

(a)	(x - 4)(x - 5)	
	B1 for $(x - a)(x - b)$ where $ab = 20$	
	or $a + b = -9$	
		B2

(b) 4 and 5 *ft their part (a) provided two brackets* B1ft

[3]

Q8.

(x+2)(6x-1) = 28	3	M1
$6x^2 - x + 12x - 2 = A$	= 28 Allow one error	M1dep
$6x^2 + 11x - 30 (= 0)$) Collect terms to one side, ft their four terms	M1dep
(3 <i>x</i> + 10)(2 <i>x</i> – 3) (=	= 0)	A1
$(x = -\frac{10}{3} \text{ and}) x = 1$ o ft	.5 ne t their two brackets	B1ft
2(6 × 1.5 – 1 + 1.5	+ 2)	
or 14 × 1.5 + 2		
2	2(6x - 1 + x + 2)	
0	14x + 2	M1

23

10	
(and $x = -3$	discarded)
	May be implied

Q9. $30x^{3}y^{7}$ (a) B1 for two correct terms **B2 Additional Guidance** Do not ignore fw for B2 $30 \times x^3 \times y^7$ **B1** $30 \times x^3 y^7$ **B**1 *x*³*y*⁷30 **B1** $7x^3 \times 4y^7$ **B**1 Do not allow addition sign, eg $10x^3 + 3y^7$ **B0** (b) $x^2 - 3x + 7x - 21$ Allow one error M1 $x^2 + 4x - 21$ A1 **Additional Guidance** Do not ignore fw unless attempting to solve the equation $x^2 - 3x - 21$ or $x^2 + 7x - 21$ (one error) M1A0 $x^2 - 21$ (two errors) M0A0 $x^2 - 4x - 21$ with no other working (two errors) M0A0 8 and -2 (c)

or x = 8 and x = -2

B1ft

[7]

(d)
$$2xy (4x + 3y)$$

 $B1$ for a correct partial factorisation
 $x (8xy + 6y^2)$
 $y (8x^2 + 6xy)$
 $2 (4x^2y + 3xy2)$
 $2x (4xy + 3y^2)$
 $2y (4x^2 + 3xy)$
 $xy (8x + 6y)$

B2 [7]

B1