Non-Calculator

1.	quence has three terms.	
	term-to-term rule for the sequence is	
	multiply by 8 and then add 11	
(a)	The first term of the sequence is −1	
	Work out the third term.	
		_
		_
		_
		_
	Answer	
(b)	The order of the three terms is reversed to make a new sequence.	
	Work out the term-to-term rule for this sequence.	
		_
	Answer	_
	(Total 3	

Q2.

A sequence of patterns uses black squares and white squares.

Here are the first three patterns.

Pattern 1

Pattern 2

Pattern 3

(a) Circle the expression for the number of black squares in Pattern n
--

4*n*

n + 2

6*n* – 2

2n + 2

(1)

(b)	Will the number of black squares alway	s be	even'
١	\sim	vin the number of black equales aima	0 00	01011

Tick a box.

Yes

No

63

Give a reason for your answer.

				(1	ľ
_	_	_		_	

(Total 2 marks)

he first	three terr	ns of a se	equence ar	e
	a	b	c	
The tern	n-to-term ı	rule of th	e sequenc	e is
		Multi	ply by 2 an	d subtract 4
Show th	at $c = c$	4(a - 3)		

(Total 4 marks)

Q4.

Here are the first three lines of a number pattern.

Line 1
$$2 \times 2 - 2 \times 1^2 = 2$$

Line 2
$$4 \times 3 - 2 \times 2^2 = 4$$

Line 3
$$6 \times 4 - 2 \times 3^2 = 6$$

(a) Write down Line 4 of the pattern.

(b) Which line of the pattern is this?

Line _____
$$38 \times 20 - 2 \times 19^2 = 38$$
 (1)

(c) Line $n 2n(n+1) - 2n^2 = 2n$

Show how
$$2n(n+1) - 2n^2$$
 simplifies to $2n$

(1) Fotal 4 marks)

Q5. Wri	te down the ne	ext two t	terms in th	e sequence.				
	2 9	16	23 _				(Tot	al 2 marks
Q6. This	s sequence of	patterns	s is made ા	using sticks.				
	Pattern 1		Patter	n 2		Pattern 3		
(a)	Complete to	he table	for Patterr	n 4 and Patte	ern 5			
	Pattern		1	2	3	4	5	
	Number of sticks		5	9	13			
(b)	Work out th	ie <i>n</i> th te	rm of the s	sequence	5 9	13		(1)
			Answ	/er				(2)
(c)	Which patte	ern is ma	ade using (53 sticks?				

Which pattern is made using 53 sticks?

Answer

(2) (Total 5 marks)

		46	40	34	28	22		
Wor	k out the <i>n</i> th	term of	the seque	nce.				
			Ansv	ver				 (Total 2 mark
0								
8. (a)	Here are th	ne fourth	and fifth to	erms of a	a Fibonaco	ci-type seq	uence.	
						28	43	
	Each term	is the su	m of the p	revious t	wo terms.			
	Show that	the first t	erm is 2					
(b)	Here are th	ne first ar	nd third ter	ms of a	different F	ibonacci-ty	pe sequence.	
	a			Ь	•			
	Each term	is the su	m of the p	revious t	wo terms.			
	Work out a	n expres	sion in ter	ms of a	and b for t	he fifth ter	m.	

(Total 5 marks)

Q9.	
The n th term of a sequence is $2n + 1$	
The n th term of a different sequence is $3n - 1$	
Work out the three numbers that are	
in both sequences	
and	
between 20 and 40	
Answer,	
	(Total 3 mark
10.	
The term-to-term rule for a sequence is	
multiply by 2	
The sequence starts	
a 2a	
The Astalous last of the Great thousand arms in CO	
The total value of the first three terms is 63	
Work out the total value of the first four terms.	
Answer	

Q11 . (a)	A sequence starts 5 13 21 29	
` '	Circle the expression for the n th term.	
	8-3n $8n+5$ $8n-3$ $5n+8$	
(b)	The term-to-term rule for a different sequence is	(1)
	Multiply the previous term by 2 then subtract 5	
	The second term in this sequence is $2x + 7$	
	The sum of the first three terms is 57	
	Work out the value of x .	

(4) (Total 5 marks)

Q12.

Which of these is a geometric progression? Circle your answer.

2, 4, 6, 8, 10

2, 3, 5, 8, 12

2, 6, 18, 54, 162

2, 6, 10, 14, 18

(Total 1 mark)

Calculator

Q	1	3	
	1	3	•

Here is a linear sequence.

5

13

21

29

Circle the expression for the nth term of the sequence.

n + 8

5n + 8

8*n*

8n - 3

(Total 1 mark)

Q14.

Here is a sequence of patterns made with squares.

Pattern 1

Pattern 2

Pattern 3

The rule for working out the number of squares in each pattern is

Square the pattern number and then add 2

(a) How many squares are in pattern 7?

Answer ___

(1)

(b) Which pattern has 123 squares?

Answer _____

(2)

(Total 3 marks)

Q15.

A sequence of patterns uses grey squares and white squares.

Here are the first four patterns.

(a) Work out the **total** number of squares in Pattern 100

Answer____

(b) Complete this number machine for the sequence of patterns.

(1) (Total 4 marks)

(3)

Q16.

Work out the next term of this quadratic sequence.

4

12

24

40

Answer _____

(Total 2 marks)

Q17.

Circle the nth term of the linear sequence 3 7 11

n + 4

3n + 4

4*n* – 1

4n + 3

(Total 1 mark)

Q18.

The first four terms of a sequence are -10 -8 -6 -4

Circle the expression for the nth term of the sequence.

-12 - 2n

-8 - 2*n*

n + 2

2*n* - 12

(Total 1 mark)

19.									
Cons	secutive nu	ımbers iı	n this pa	ttern car	n be use	d to change	miles to kilo	metres.	
	3	5	8	13	21	34			
For e	example	3 miles	= 5 kilor	netres					
		5 miles	= 8 kilo	metres a	and so or	า.			
(a)	Use the	oattern to	o chang	e 13 mile	es to kilo	metres.			
					13 miles	=			km
(b)	Use the p	oattern to	o chang	e 13 kilo	metres t	o miles.			
				,	13 km =				_ miles
(c)	Use the p	oattern to	change	e 42 mile	es to kilo	metres.			
					42 miles	=			km
(d)	Use two	values i	n the pa	ttern to d	change 1	18 miles to k	ilometres.		
					18 miles	=			km
					10 1111168				NIII
								(1	otal 6 ma

		23	3 –1	4 9		
ach t	term is obtain	ed by adding	the previous	two terms toge	ether.	
a) '	Work out the next two terms in the sequence.					
-			ļ.	Answer	and	
) ·	The sequence	e continues.				
[How many negative terms are in the sequence? Circle your answer.					
	1	2	3	4	more than 4	
1	Give a reason for your answer.					

Q21.

Work out the next term of this quadratic sequence.

5

8

14

Answer _____

23

.....

(Total 2 marks)