Write your name here Surname		Other names
Pearson Edexcel International GCSE	Centre Number	Candidate Number
Mathematic Level 1/2 Mod Paper 2HR		Higher Tier
Thursday 7 June 2018 – M Time: 2 hours	orning	Paper Reference 4MA1/2HR
You must have: Ruler graduated in centimetres a pen, HB pencil, eraser, calculator.	•	

Instructions

- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Without sufficient working, correct answers may be awarded no marks.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- Calculators may be used.
- You must **NOT** write anything on the formulae page. Anything you write on the formulae page will gain NO credit.

Information

- The total mark for this paper is 100.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

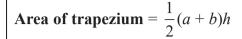
Advice

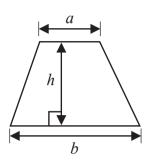
- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.

Turn over ▶

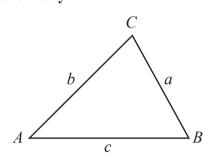
International GCSE Mathematics

Formulae sheet – Higher Tier


Arithmetic series


Sum to *n* terms, $S_n = \frac{n}{2} [2a + (n-1)d]$

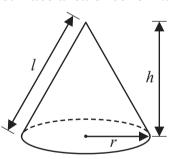
The quadratic equation


The solutions of $ax^2 + bx + c = 0$ where $a \ne 0$ are given by:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

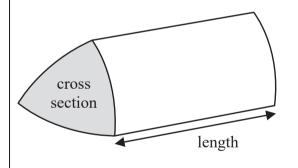
Trigonometry

In any triangle ABC

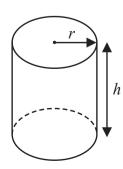

Sine Rule
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Cosine Rule
$$a^2 = b^2 + c^2 - 2bc \cos A$$

Area of triangle =
$$\frac{1}{2}ab\sin C$$

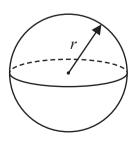

Volume of cone = $\frac{1}{3}\pi r^2 h$

Curved surface area of cone = πrl



Volume of prism

= area of cross section \times length



Volume of cylinder = $\pi r^2 h$ Curved surface area of cylinder = $2\pi rh$

Volume of sphere =
$$\frac{4}{3}\pi r^3$$

Surface area of sphere = $4\pi r^2$

Answer ALL TWENTY FOUR questions.

Write your answers in the spaces provided.

You must write down all the stages in your working.

1 x, 10 and y are three integers written in order of size, starting with the smallest integer.

The mean of x, 10 and y is 11 The range of x, 10 and y is 7

Work out the value of x and the value of y.

$$\frac{x+10+5}{3} = 11$$
 $\longrightarrow x+10+y=33$

$$x+10+5=33$$

$$x+10+7+x=33 \rightarrow 2x+17=33 \rightarrow 2x=16$$

$$y=x+7$$

$$=8+7=15$$

x =**?**

(Total for Question 1 is 2 marks)

$$pressure = \frac{force}{area}$$

2 A box is put on a table.

The face of the box in contact with the table is in the shape of a rectangle, 2 m by 1.25 m. The pressure on the table due to the box is 42 newtons/m^2

Work out the force exerted by the box on the table.

los newtons

(Total for Question 2 is 3 marks)

3 Behnaz makes candles.

She has 6.3 kilograms of wax and uses it all to make candles.

Each candle Behnaz makes uses 210 grams of wax.

Behnaz sells $\frac{2}{5}$ of the candles for \$13 each.

She then reduces this price by 20% and sells the rest of the candles.

Work out the total amount of money Behnaz gets by selling all the candles she made.

\$ 343.2

(Total for Question 3 is 4 marks)

4 (a) Expand and simplify
$$3(c-7) + 2(3c+4)$$

$$3(c-7) + 2(3c+4)$$

$$= 3c-21 + 6c + 8$$

$$= 9c-13$$

9c-13

(b) Expand and simplify
$$(x + 7)(x - 2)$$

$$(x+7)(x-2)$$
= $2c^2+7x-2x-14$
= $2c^2+5x-14$

 $x^2 + 5x - 14$

(c) Factorise fully
$$28y^2 - 21y$$

75 **(4**5 **-3)** (2)

(d) Solve
$$\frac{7x-2}{4} = 3x + 1$$

Show clear algebraic working.

$$7x-2 = 4(3x+1)$$

$$7x-2 = 12x+4$$

$$-6 = 5x$$

$$\frac{-6}{5} = x$$

$$x =$$
 (3)

(Total for Question 4 is 9 marks)

5 Abelie flew by plane from Dubai to Rome.

The flight time was 6 hours 42 minutes.

The average speed of the plane was 650 kilometres per hour.

Work out the distance the plane flew.

4355 kilometres

(Total for Question 5 is 3 marks)

6 Hiran invests 20 000 rupees in an account for 3 years at 1.5% per year compound interest.

Work out the total amount of money in the account at the end of 3 years. Give your answer to the nearest rupee.

$$\frac{20000 \times (1.015)^3}{20914} = \frac{20914}{10000}$$

769/4 rupees

(Total for Question 6 is 3 marks)

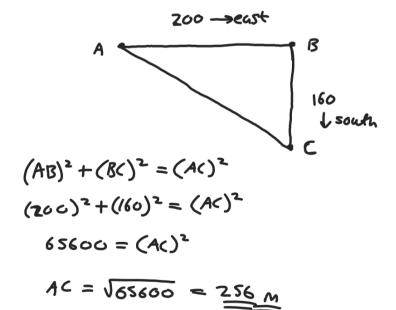
7 (a) Simplify fully $\frac{20x^2y^6}{4x^2y^2}$

$$\frac{20 \times^2 y^6}{4 \times^2 y^2} = \frac{5y^4}{}$$

5₅*

(b) Make e the subject of the formula h = 3e + f

$$h = 3e + f \rightarrow 3e = h - f$$


$$e = \frac{h - f}{3}$$

$$c = \frac{h-f}{3}$$

(Total for Question 7 is 4 marks)

8 From point A, Stanley walks 200 m due east to point B. From B, he then walks 160 m due south to point C.

Work out the length of AC. Give your answer correct to 3 significant figures.

2S6 metres

(Total for Question 8 is 3 marks)

9

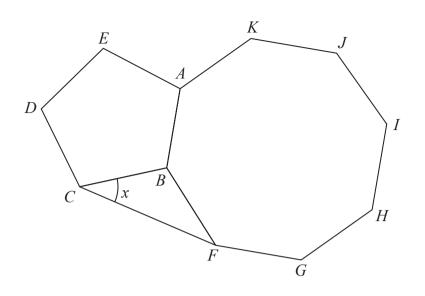


Diagram **NOT** accurately drawn

The diagram shows a regular pentagon, *ABCDE*, a regular octagon, *ABFGHIJK*, and an isosceles triangle, *BCF*.

Work out the size of angle x.

Interior angle of perhapson
$$\rightarrow (180 \times 3) = 108^{\circ}$$

Interior angle of octagon $\rightarrow (180 \times 6) = 135^{\circ}$

$$CBF = 360 - (135 + 108)$$

$$= 117^{\circ}$$

31-5

(Total for Question 9 is 4 marks)

10 ABCD is a trapezium.

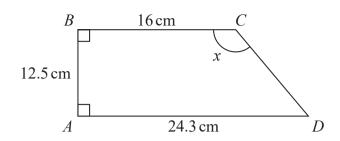
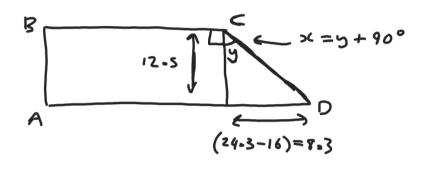



Diagram **NOT** accurately drawn

Work out the size of angle x. Give your answer correct to 1 decimal place.

Tan
$$y = \frac{8.3}{12.5}$$

 $y = \frac{8.3}{12.5} = 33.58...$
 $y + 90^\circ = x$
 $33.58... + 90 = 123.6^\circ$

123.6

(Total for Question 10 is 4 marks)

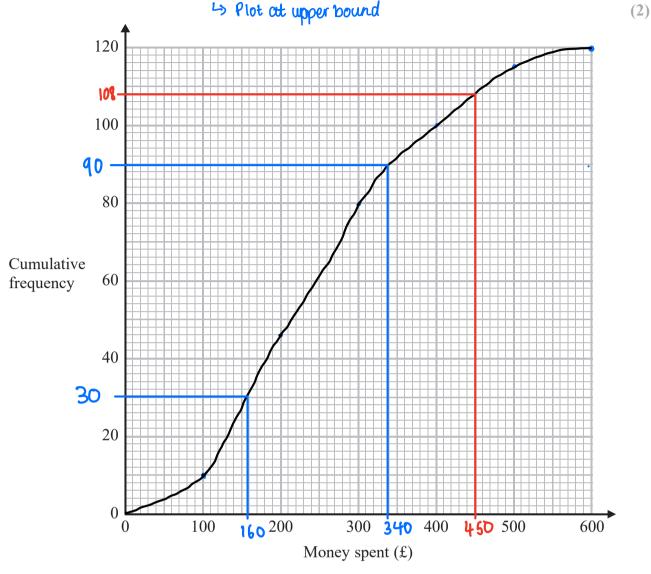
11 The table shows information about the amount of money spent on holiday by each of 120 families.

Money spent (£m)	Frequency
$0 < m \leqslant 100$	10
$100 < m \leqslant 200$	36
$200 < m \leqslant 300$	34
$300 < m \leqslant 400$	20
$400 < m \leqslant 500$	15
$500 < m \leqslant 600$	5

highest number

(a) Write down the modal class.

$$100 < m \le 200$$


(b) Complete the cumulative frequency table for the information in the table.

Money spent (£m)	Cumulative frequency	
$0 < m \leqslant 100$	10	
$0 < m \leqslant 200$	46	10 436
$0 < m \leqslant 300$	8 O	46+34
$0 < m \leqslant 400$	100	80 +20
$0 < m \leqslant 500$	115	100 +15
$0 < m \leqslant 600$	120	115 +5

(1)

(c) On the grid, draw a cumulative frequency graph for your table.

(d) Use your graph to find an estimate for the interquartile range.

1Q2=
$$VQ - LQ$$

 VQ is at $\frac{3}{4}$ of $120 = 90 - 340$
 LQ is at $\frac{1}{4}$ of $120 = 30 - 160$
£ 180

(e) Use your graph to find an estimate for the number of families that spent more than £450 on holiday.

(b) Oraw Line from £450

More than
$$450 = 120 - 108 = 12$$

(Total for Question 11 is 8 marks)

12

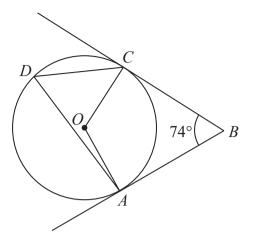


Diagram **NOT** accurately drawn

A, C and D are points on a circle, centre O. AB and CB are tangents to the circle.

Angle $ABC = 74^{\circ}$

Work out the size of angle *ADC*. Show your working clearly.

$$COA = 360 - (2 \times 90 + 74) = 106$$

$$AUC = \frac{106}{2} = 53^{\circ}$$

23

(Total for Question 12 is 3 marks)

.....

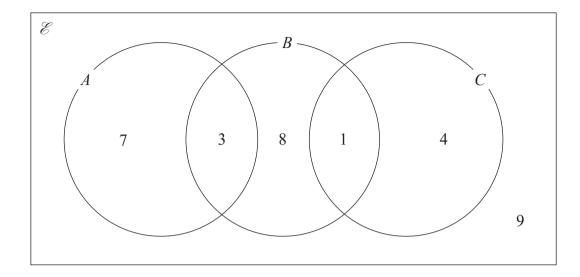
13 The straight line L_1 has equation y = 6 - 2x

The straight line L_1 is perpendicular to L_1 and passes through the point (4, 7)

Find the coordinates of the point where the line L_2 crosses the x-axis.

Lz pependiculus sactions -> 1/2

(Total for Question 13 is 4 marks)


14
$$128 = 4^{2x} \times 2^x$$

Work out the value of x.

$$x = 1.4$$

(Total for Question 14 is 3 marks)

15 The Venn diagram shows a universal set, \mathcal{E} , and sets A, B and C.

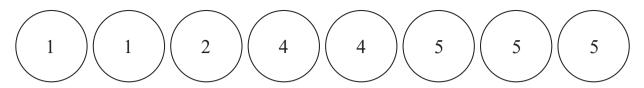
7, 3, 8, 1, 4 and 9 represent the **numbers** of elements.

Find

(i) $n(A \cup B)$

19

(ii) $n(A' \cap C)$


5

(iii) $n(A' \cup B')$

29

(Total for Question 15 is 3 marks)

16 There are 8 counters in a bag. There is a number on each counter.

Fiona takes at random three of the counters.

She adds the numbers on the **three** counters to get her total.

Work out the probability that her total is an odd number.

$$P(odd, odd, odd) \rightarrow \frac{5}{8} \times \frac{4}{7} \times \frac{3}{6} = \frac{5}{28}$$

$$P(odd, even, even) \rightarrow \frac{5}{8} \times \frac{3}{7} \times \frac{2}{6} = \frac{5}{56}$$

$$P(even, odd, even) \rightarrow \frac{3}{8} \times \frac{5}{7} \times \frac{2}{6} = \frac{5}{56}$$

$$P(even, even, odd) \rightarrow \frac{3}{8} \times \frac{2}{7} \times \frac{5}{6} = \frac{5}{56}$$

$$\frac{28}{2} + 3 \times \frac{26}{2} = \frac{28}{52}$$

25/56

(Total for Question 16 is 4 marks)

17 (a) Use algebra to show that $0.436 = \frac{24}{55}$

$$100x = 43.63.63.63...$$

$$x = 0.43.63.63...$$

$$99x = 43.2$$

$$99x = 43.2$$

$$x = \frac{43.2}{99} = \frac{432}{990} = \frac{24}{55}$$

(b) Show that $\frac{\sqrt{20} + \sqrt{80}}{\sqrt{3}}$ can be expressed in the form \sqrt{a} where a is an integer.

Show your working clearly.

$$\frac{\sqrt{20+180} \times \sqrt{3}}{\sqrt{3}} \to \frac{\sqrt{60+1240}}{\sqrt{9}} \to \frac{\sqrt{15}\sqrt{+}+\sqrt{16}\sqrt{5}}{3} \to \frac{2\sqrt{15}+4\sqrt{15}}{3}$$

(3)

(2)

(Total for Question 17 is 5 marks)

18 Solve the simultaneous equations

$$2x^2 + 3y^2 = 14$$

$$x = 2y - 3$$

Show clear algebraic working.

$$(2y-3)(2y-3) = 4y^2 - 12y+9$$

$$y = \frac{24 + \sqrt{400}}{22} = \frac{2}{11} \quad x = \frac{2y - 3}{11} \rightarrow x = \frac{1}{11}$$

$$y = \frac{24 - \sqrt{400}}{22} = \frac{2}{11} \quad x = \frac{2y - 3}{11} \rightarrow x = \frac{29}{11}$$

$$x = 1$$
 $y = 2$
 $x = \frac{-29}{11}$ $y = \frac{2}{11}$

(Total for Question 18 is 5 marks)

19
$$a = \frac{p - q}{t}$$

p = 8.4 correct to 2 significant figures.

q = 6.3 correct to 2 significant figures.

t = 0.27 correct to 2 significant figures.

Work out the upper bound for the value of a. Show your working clearly.

Give your answer correct to 1 decimal place.

$$\alpha = \frac{8.45 - 6.25}{0.625} = \frac{8.3}{2}$$

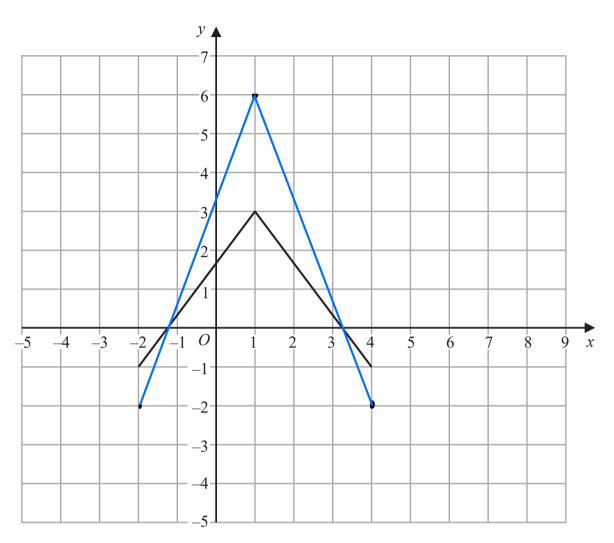
8.3


(Total for Question 19 is 3 marks)

20 Solve the inequality $4x^2 - 5x - 6 > 0$

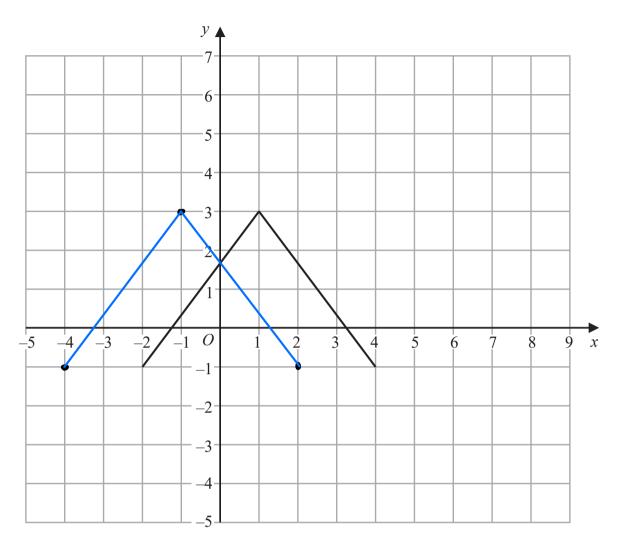
$$4x^2 - 5x - 6 > 0$$

$$-8x3 = -24$$


$$-8+3=-5$$

x4-3/4 x72

(Total for Question 20 is 4 marks)


21 Here is the graph of y = f(x)

(a) On the grid above, draw the graph of y = 2f(x)

Stretch y by 2.
$$y \times 2$$
.

Here is the graph of y = f(x)

(b) On the grid above, draw the graph of y = f(-x)

Reflect in Yaxis
(Total for Question 21 is 4 marks)

(2)

x x -1

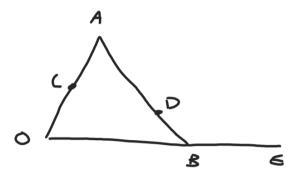
22 Express $\frac{4x^2-25}{5x^2+2x-7} \times \left(\frac{2}{x-3}-\frac{3}{2x-5}\right)$ as a single fraction in its simplest form.

$$\frac{4^{x^2-25}}{5x^2+2^{x}-7} \times \left(\frac{2}{x-3}-\frac{3}{2x-5}\right) \to \frac{(2x+5)(2x-5)}{(5x+7)(x-1)} \times \frac{2(2x-5)-3(x-3)}{(x-3)(2x-5)}$$

$$\frac{(2\times +5)(2\times -5)}{(5\times +7)(\times -1)} \times \frac{\times -1}{(\times -3)(2\times -5)} \longrightarrow \frac{2\times +5}{(5\times +7)(\times -3)}$$

(Total for Question 22 is 4 marks)

23 *OAB* is a triangle.


$$\overrightarrow{OA} = \mathbf{a} \qquad \overrightarrow{OB} = \mathbf{b}$$

C is the midpoint of OA.

D is the point on AB such that AD:DB = 3:1

E is the point such that $\overrightarrow{OB} = 2\overrightarrow{BE}$

Using a vector method, prove that the points C, D and E lie on the same straight line.

$$\overrightarrow{AD} = 3/4(6-a)$$

$$\overrightarrow{DE} = \frac{1}{7}a + \frac{3}{4}(5-a) = \frac{3}{4}5 - \frac{1}{4}a$$

$$\overrightarrow{DE} = \frac{1}{4}(5-a) + \frac{1}{2}5 = \frac{3}{4}5 - \frac{1}{4}a$$

(Total for Question 23 is 5 marks)

24 (a) Express $7 - 4x - x^2$ in the form $p - (x + q)^2$ where p and q are constants.

$$\rho - (x+2)^{2} = -(x^{2}+4x+4)$$

$$= -x^{2}-4x-4$$

$$50 \rho = 11 \qquad 11 - (x+2)^{2}$$

$$9=2$$

11 - (×+2)2 (2)

(b) Use your answer to part (a) to solve the equation $7 - 4(y+3) - (y+3)^2 = 0$ Give your solutions in the form $e \pm \sqrt{f}$ where e and f are integers.

$$(9+3+2)^{2} = 11$$

 $9+3+2 = \pm \sqrt{11}$
 $9=-5\pm \sqrt{11}$
 $e=-5$ $e=-1$

y=-\$±√11
(3)

The curve C has equation $y = 3 - 5(x + 1)^2$ The point A is the maximum point on C.

(c) Write down the coordinates of A.

$$-5(x+1)^2+3$$

(...., 3 (1)

(Total for Question 24 is 6 marks)

TOTAL FOR PAPER IS 100 MARKS