Version 1.0

General Certificate of Secondary Education June 2013

Mathematics

43603H

Unit 3 Higher tier

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2013 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

М	Method marks are awarded for a correct method which could lead to a correct answer.
Α	Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
В	Marks awarded independent of method.
Q	Marks awarded for Quality of Written Communication
ft	Follow through marks. Marks awarded for correct working following a mistake in an earlier step.
SC	Special case. Marks awarded within the scheme for a common misinterpretation which has some mathematical worth.
Mdep	A method mark dependent on a previous method mark being awarded.
B dep	A mark that can only be awarded if a previous independent mark has been awarded.
oe	Or equivalent. Accept answers that are equivalent.
	eg, accept 0.5 as well as $\frac{1}{2}$
[<i>a</i> , <i>b</i>]	Accept values between a and b inclusive.
3.14	Allow answers which begin 3.14 eg 3.14, 3.142, 3.149.
Use of brackets	It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a candidate has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the candidate. In cases where there is no doubt that the answer has come from incorrect working then the candidate should be penalised.

Questions which ask candidates to show working

Instructions on marking will be given but usually marks are not awarded to candidates who show no working.

Questions which do not ask candidates to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Candidates often copy values from a question incorrectly. If the examiner thinks that the candidate has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

PMT

Unit 3 Higher Tier

Q	Answer	Mark	Comments
1	$\pi \times 3.5 \times 3.5$ or $3.14 \dots \times 3.5 \times 3.5$	M1	ое
	or $\pi \times 3.5^2$ or $3.14 \ldots \times 3.5^2$		
	38.4(8) or 38.4(6)	A1	$\frac{49}{4}\pi$ or 12.25 π or 12.3 π
	38.5	B1 ft	ft their answer of 2 d.p. or more

2	<i>x</i> + 2 <i>x</i> + 90 + 138	M1	oe
	or states angles in quadrilateral = 360		Attempts to subtract from 360
	x + 2x + 90 + 138 = 360 or $360 - 90 - 138$ or 132 seen	M1dep	oe
	x + 2x = 360 - 90 - 138 or $3x =$ their 132 or their 132 \div 3	M1dep	oe
	44	A1	

3a	Correct reflection (1, -3), (1, -5), (5, -3)	B2	B1 for triangle reflected in line $x = -1$ B1 for triangle reflected in line $y = c$ B1 for correct points without the triangle drawn
3b	Rotation	B1	
	90(°) clockwise	B1	ое
			270(°) anticlockwise
			Accept $\frac{1}{4}$ turn clockwise
	Origin, O or (0, 0)	B1	Oe

Q	Answer	Mark	Comments
4	7.6 × 2.4	M1	
	18.24 or 18.2	A1	
	18	B1 ft	ft their area provided at least 1 d.p. shown
	30 + 10 × their 18	M1	Oe
	210	A1 ft	ft their area
			212.40 or 212 implies M1A1B0M1A1ft
			212.4 implies M1A1B0M1A0

Q	Answer	Mark	Comments
5a	2.2	B1	
5b	1000 grams = 1 kg seen or implied	M1	1 ÷ 2.2 (= 0.45 kg) (= 1 pound)
	(1 pound =) 1000 ÷ 2.2 (= 454 … grams)	M1	(1 gram =) 2.2 ÷ 1000 (= 0.0022 pound)
	or 1 ÷ 2.2 × 1000		1 ÷ 2.2 × 0.5 (= 0.227 … grams)
	[454, 455] or 450		[0.227, 0.2275] or 0.225 or 0.230
	$(\frac{1}{2} \text{ pound} =) 1000 \div 2.2 \div 2$ (= 227.2 grams)	M1	100 grams = 2.2 ÷ 1000 × 100 (= 0.22 pounds)
			or 200 grams = 2.2 ÷ 1000 × 200 (= 0.44 pounds)
	[227, 227.5] or 225 or 230		or 250 grams = 2.2 ÷ 1000 × 250 (= 0.55 pounds)
			or 500 grams = 2.2 ÷ 1000 × 500 (= 1.1 pounds)
	[227, 227.5] or 225 or 230 and 250 g stated	A1	0.55 (pounds) and 250 g stated
	Slateu		0.44 (pounds) and 250 g stated
			SC3 for e.g. 0.227 and 250 g stated
Alt 5b	1000 grams = 1 kg seen or implied	M1	May be implied from working
Using 2			1 ÷ 2 (= 0.5 kg) (= 1 pound)
	(1 pound =) 1000 ÷ 2 (= 500 grams)	M1	(1 gram =) 2 ÷ 1000 (= 0.002 pound)
	or 1 ÷ 2 × 1000 (= 500 grams)		1 ÷ 2 × 0.5 (= 0.25 grams)
	$(\frac{1}{2} \text{ pound} =) 1000 \div 2 \div 2$ (= 250 grams)	M1	100 grams = 2 ÷ 1000 × 100 (= 0.2 pounds)
	(or 200 grams = 2 ÷ 1000 × 200 (= 0.4 pounds)
			or 250 grams = 2 ÷ 1000 × 250 (= 0.5 pounds)
			or 500 grams = 2 ÷ 1000 × 500 (= 1 pound)
	250 g stated	A1	SC3 for e.g. 0.25 and 250 g stated

Q	Answer	Mark	Comments
Alt	1000 grams = 1 kg seen or implied	M1	1 ÷ 1.6 (= 0.625 kg) (= 1 pound)
5b Using 1.6	(1 pound =) 1000 ÷ 1.6 (= 625 grams) or 1 ÷ 1.6 × 1000	M1	(1 gram =) 1.6 ÷ 1000 (= 0.0016 pound) 1 ÷ 1.6 × 0.5 (= 0.3125 grams) [0.3125, 0.313]
	(¹ / ₂ pound =) 1000 ÷ 1.6 ÷ 2 (= 312.5 grams) [312.5, 313]	M1	$\begin{array}{l} 100 \; grams = 1.6 \div 1000 \times 100 \\ (= 0.16 \; pounds) \\ \\ \text{or } 200 \; grams = 1.6 \div 1000 \times 200 \\ (= 0.32 \; pounds) \\ \\ \text{or } 250 \; grams = 1.6 \div 1000 \times 250 \\ (= 0.4 \; pounds) \\ \\ \text{or } 500 \; grams = 1.6 \div 1000 \times 500 \\ (= 0.8 \; pounds) \end{array}$
	[312.5, 313] and 250g stated	A1ft	0.4 (pounds) and 250 g stated SC3 for e.g. 0.3125 and 250 g stated
Alt	1000 grams = 1 kg seen or implied	M1	1 ÷ 2.5 (= 0.4kg) (= 1 pound)
5b Using 2.5	(1 pound =) 1000 ÷ 2.5 (= 400 grams) or 1 ÷ 2.5 × 1000	M1	(1 gram =) 2.5 ÷ 1000 (= 0.0025 pound) 1 ÷ 2.5 × 0.5 (= 0.2 grams)
	$(\frac{1}{2} \text{ pound =}) 1000 \div 2.5 \div 2$ (= 200 grams)	M1	100 grams = $2.5 \div 1000 \times 100$ (= 0.25 pounds) or 200 grams = $2.5 \div 1000 \times 200$ (= 0.5 pounds) or 250 grams = $2.5 \div 1000 \times 250$ (= 0.625 pounds) or 500 grams = $2.5 \div 1000 \times 500$ (= 1.25 pounds)
	200 and 250g stated	A1ft	0.625 (pounds) and 250 g stated SC3 for 0.2 and 250 g stated

Q	Answer	Mark	Comments
Alt	1000 grams = 1 kg seen or implied	M1	1 ÷ 4.5 (= 0.222kg) (= 1 pound)
5b	(1 pound =) 1000 ÷ 4.5	M1	(1 gram =) 4.5 ÷ 1000 (= 0.0045 pound)
Using 4.5	(= 222(.22…) grams or 220 grams) or 1 ÷ 4.5 × 1000		1 ÷ 4.5 × 0.5 (= 0.111 grams)
	(M1	100 grams = 4.5 ÷ 1000 × 100 (= 0.45 pounds)
			or 200 grams = 4.5 ÷ 1000 × 200 (= 0.9 pounds)
			or 250 grams = 4.5 ÷ 1000 × 250 (= 1.125 pounds)
			or 500 grams = 4.5 ÷ 1000 × 500 (= 2.25 pounds)
	111 or 110and 100g stated	A1ft	0.45 (pounds) and 100g stated
			SC3 for e.g. 0.111 and 100 g stated
6	2x - 4 = x + 5	B1	(P =) 2(2x - 4) + 2(x + 5)
0	2x - 4 - x + 3		or $6x + 2$ oe
	2	N/1	
	2x - x = 5 + 4	M1	6x + 2 = 4(x + 5)
			or $6x + 2 = 4(2x - 4)$
	x = 9 or side = 14	A1	
	(Perimeter =) $4 \times$ their 14	M1	Do not ft 4 × their x
	or $9 \times 6 + 2$		
	56	Q1	Strand (iii)
			Shows <i>x</i> = 9 (and each side is 14 (cm)) and perimeter is 56 (cm)
			56 without working implies B1M1A1M1

Q	Answer	Mark	Comments
	T	1	· · · · · · · · · · · · · · · · · · ·
7a	-2, -3, -2	B2	B1 For 1 or 2 correct
7b	Their 5 points plotted	M1	Allow one error
			$\pm \frac{1}{2}$ square
	Fully correct with a smooth curve	A1	$\pm \frac{1}{2}$ square
7c	Correct reading at $y = 0.5$	B1 ft	ft their curve
			$\pm \frac{1}{2}$ square
	Second correct reading at $y = 0.5$	B1ft	ft their curve
			$\pm \frac{1}{2}$ square
			Award SC1 for [1.8, 1.9] and [–1.9, –1.8] only if graph is missing.

Allow 0.8 if working shown

Answer on ft may be rounded

Q	Answer	Mark	Comments
8a	2 or 2.0	B1	
8b	Circular arc drawn centre post	M1	
	Fully correct arc radius 5 cm	A1	± 2 mm tolerance
8c	2 cm = 1 metre	M1	Any equivalent scale
	or $1 \text{ cm} = 0.5 \text{ metre}$		Condone 1 square = 0.5 metre
	1 cm = 50 cm or 2 cm = 100 cm	M1	Any order
	or 2:100		Common units
	1 : 50	A1	50 : 1 implies M1M1A0
			D4 for compatible
9	Fully correct at (3, 6), (5, 7), (5, 5), (7, 6)	B2	B1 for correct sizeB1 for at least two correct points as vertices
10a	tan chosen	M1	h _ 1.2
			$\frac{h}{\sin 35} = \frac{1.2}{\sin 55}$
	$\tan 35 = \frac{h}{1.2}$	M1dep	$\frac{1.2\sin 35}{\sin 55}$
	or 1.2 tan 35		

A1

M1

A1ft

oe

0.84 ...

2 × their 0.84...

or 2.4 tan 35

1.68... or 1.7

10b

Q	Answer	Mark	Comments
11	90 seen or implied	M1	90 may be on diagram or may implied by use of Pythagoras or trigonometry
	8.3 ² + 5.2 ²	M1	sin 32.(067) or cos 57.(9326) = $\frac{5.2}{OB}$
			or cos 32.(067) or sin 57.(9326) = $\frac{8.3}{OB}$
	$\sqrt{8.3^2 + 5.2^2}$	M1 dep	$\frac{5.2}{\sin 32.(067)} \text{ or } \frac{5.2}{\cos 57.(9326)}$
			or $\frac{8.3}{\cos 32.(067)}$ or $\frac{8.3}{\sin 57.(9326)}$
	9.79 or 9.8	A1	Accept 10 if working seen

12	$\frac{3x}{x} = \frac{36}{x+4}$	M1	ое
	x x + 4		Scale factor 3 or $\frac{1}{3}$ seen or implied
	3x (x+4) = 36x	M1	ое
			36 ÷ 3 (= 12)
	3(x+4) = 36	M1	ое
	or $3x^2 + 12x = 36x$		their 12 – 4
	3x + 12 = 36	M1	(<i>x</i> =) 8
	or $x + 4 = 12$		
	or <i>x</i> = 8		or their 8×3
	or $3x^2 - 24x = 0$		
	or $3x^2 = 24x$		
	(3 <i>x</i> =) 24	A1	24

Q	Answer	Mark	Comments
13	$\frac{1}{2}$ × 12 × 14 × sin 52	M1	ое
			$h = 12 \sin 52$ (= 9.456) and $\frac{1}{2} \times 14 \times h$
	[66, 66.3]	A1	
	cm ²	B1	

14	$\frac{-1\pm\sqrt{1^2-4(3)(-5)}}{2(3)}$	M1	Allow one error
	$\frac{-1\pm\sqrt{1^2-4(3)(-5)}}{2(3)} \text{ or } \frac{-1\pm\sqrt{61}}{6}$	A1	oe
	1.14 and –1.47	A1	SC2 for 1.14 or -1.47
			SC1 for 1.135 or . –1.468

15a	$y \alpha x$ or $y = kx$ or $cy = x$	M1	ое
			28 ÷ 7 or 4 seen
			7 ÷ 28 or 0.25 seen
	$28 = k \times 7$ or $k = 4$	M1	oe
	<i>c</i> × 28 = 7 or <i>c</i> = 0.25		
	y = 4x	A1	oe
			Accept $y = kx$ and $k = 4$
15b	4×12 or their 4×12	M1	Must be direct proportion
	48	A1ft	

Q	Answer	Mark	Comments
	1		
16a	70	B1	May be on diagram
	(Opposite angles of) cyclic quadrilateral (add up to 180°)	Q1	Dependent on 70
			In a quadrilateral in a circle the opposite angles add up to 180°

16b	One correct angle	M1	<i>DAE</i> = 70 or <i>BAD</i> = 25 or <i>DBC</i> = 70
			Angles can ft from their 70 in (a)
	Two correct angles	M1	<i>DAE</i> = 70 or <i>BAD</i> = 25 or <i>DBC</i> = 70 or <i>ADE</i> = 40
	Three correct angles	M1	DAE = 70 or BAD = 25 or DBC = 70 or ADE = 40 or BDC = 95 or BAE = 95
	15	A1	

17a	5 a + 3 b + 6 a - 7 b	M1	
	11 a – 4 b	A1	
17b	22	B1 ft	ft their $11 \times 8 \div$ their 4
			Accept 22 a (- 8 b)

18	20 or 30 seen	B1	
	90 + 35 or 125 seen	B1	20 sin 35 and 20 cos 35
			10 sin 35 and 10 cos 35
	$20^2 + 30^2 - (2 \times 20 \times 30 \times \cos 125)$	M1	$(30 + 20 \sin 35)^2 + (20 \cos 35)^2$
			or (15 + 10 sin 35) ² + (10 cos 35) ²
	or $10^2 + 15^2 - (2 \times 10 \times 15 \times \cos 125)$		
	1988(.29) or 1990	A1ft	497(.07) or 500
			22.29(5) or 22.3 or 22.5
			ft their 90 + 35
	44.5 or 44.6 or 45	A1	