

GCSE Maths – Algebra

Laws of Indices

Notes

WORKSHEET

This work by <u>PMT Education</u> is licensed under <u>CC BY-NC-ND 4.0</u>

O

▶ Image: Second Second

O

Laws of Indices

Indices, or an **index**, are another word for powers and are the small floating number that appears after a number or letter. The number which has the index/power applied to it is called the **base**. Indices mean that instead of writing $5 \times 5 \times 5 \times 5$ we can simply write it as 5^4 .

There are several rules of indices that need to be remembered:

1. Anything to the power of 1, is simply itself.

Examples: The power of 1 $6^1 = 6$ $x^1 = x$ $(ab)^1 = a^1b^1 = ab$

2. Anything to the power of 0 is simply 1.

Examples: The power of 0 $x^0 = 1$ $3^0 = 1$ $68^0 = 1$ $e^0 = 1$

3. Multiplication

When multiplying numbers with the same base, you add the powers.

Examples: Multiplying numbers with the same base

$$3^3 \times 3^5 = 3^{3+5} = 3^8$$

 $a^6 \times a^4 = a^{6+4} = a^{10}$
 $a^3 \times ab = a^{3+1}b = a^4b$
 $x^2y \times x^{-4}y^2 = x^{2+(-4)}y^{1+2} = x^{-2}y^3$

▶ Image: Contraction PMTEducation

www.pmt.education

4. Division

When dividing numbers with the same base, you subtract the powers.

Examples: Dividing numbers with the same base $8^7 \div 8^5 = 8^{7-5} = 8^2$ $b^9 \div b^2 = b^{9-2} = b^7$ $x^3y^{-2} \div x^{-1}y^4 = x^{3-(-1)}y^{-2-4} = x^4y^{-6}$

Note: For Rule 3 and Rule 4, if we have an expression such as $2^4 \times 3^6$ or $2^4 \div 3^6$ we cannot add or subtract the powers because the **bases are different**. The first number has base 2, whereas the second number has base 3.

5. Multiplication of powers

When raising one power to another, the powers are multiplied together.

Examples: Raising one power to another power

$$(4^2)^4 = 4^{2 \times 4} = 4^8$$

 $(c^3)^5 = c^{3 \times 5} = c^{15}$

6. Negative powers

Negative powers are equivalent to reciprocals – the base can be flipped upside down and the power made positive. The general rule is

$$a^{-m}=\frac{1}{a^m}$$

Examples: Negative powers $8^{-2} = \frac{1}{8^2} = \frac{1}{64}$ $c^{-3} = \frac{1}{c^3}$ $3^{-1} = \frac{1}{3^1} = \frac{1}{3}$ $\left(\frac{4}{5}\right)^{-2} = \left(\frac{5}{4}\right)^2 = \frac{5^2}{4^2} = \frac{25}{16}$

D O

www.pmt.education

Laws of Indices – Practice Questions

- 1. Simplify the following:
 - a) $8p^4 \times 4p^8$
 - b) $7r^6 \times 8s^5 \times 9r^4$
 - c) $2^5 \times 2^8 \times a^3$
 - d) $9f^4 \times 4^8 \times 2g^8 \times 4^5$
- 2. Simplify the following:
 - a) $x^2y^3 \div xy^2$
 - b) $16f^7g^2 \div 4f^3g$
 - c) $2r^8s^5t^2 \div r^2s^2$
 - d) $21j^8k^3l^3 \div 3k^2l$
- 3. Simplify the following:
 - a) (8⁹)³
 - b) $(h^4)^{16}$
 - c) $(ft^8)^5$
 - d) $(c^2 d^3)^4$

Worked solutions for the practice questions can be found amongst the worked solutions for the corresponding worksheet file.

▶ Image: Second Second

