^{1.} The random variable *G* has the distribution $N(\mu, \sigma^2)$. One hundred observations of *G* are taken. The results are summarised in the following table.

Interval	<i>G</i> < 40.0	$40.0 \preccurlyeq G < 60.0$	<i>G</i> ≽ 60.0
Frequency	17	58	25

- i. By considering P(G < 40.0), write down an equation involving μ and σ .
- ii. Find a second equation involving μ and σ . Hence calculate values for μ and σ .
 - [4]

[2]

iii. Explain why your answers are only estimates.

[1]

- 2. The random variable *Y* is normally distributed with mean μ and variance σ^2 . It is found that P(*Y* > 150.0) = 0.0228 and P(*Y* > 143.0) = 0.9332. Find the values of μ and σ . [6]
- 3. The mass, in kilograms, of a packet of flour is a normally distributed random variable with mean 1.03 and variance σ^2 . Given that 5% of packets have mass less than 1.00 kg, find the percentage of packets with mass greater than 1.05 kg.

[6]

- 4. (a) The heights of English men aged 25 to 34 are normally distributed with mean 178 cm and standard deviation 8 cm. Three English men aged 25 to 34 are chosen at random. Find the probability that all three of them have a height less than 194 cm.
- [3]

[3]

The Normal Distribution

It is given that the distribution is approximately normal. Use the diagram above to estimate the standard deviation of these heights, explaining your method.

5. A market gardener records the masses of a random sample of 100 of this year's crop of plums. The table shows his results.

Mass, <i>m</i> grams	<i>m</i> < 25	25 ≤ <i>m</i> < 35	35 ≤ <i>m</i> < 45	45 ≤ <i>m</i> < 55	55 ≤ <i>m</i> < 65	65 ≤ <i>m</i> < 75	<i>m</i> ≥75
Number of plums	0	3	29	36	30	2	0

(a) Explain why the normal distribution might be a reasonable model for this distribution. [1]

The market gardener models the distribution of masses by $N(47.5, 10^2)$.

(b) Find the number of plums in the sample that this model would predict to have masses in the range

(i)	$35 \le m < 45,$	[2]
(ii)	<i>m</i> < 25.	[2]
Use	your answers to parts (b)(i) and (b)(ii) to comment on the suitability of this model.	[1]
The next	market gardener plans to use this model to predict the distribution of the masses of year's crop of plums. Comment on this plan.	[1]

(C)

(d)

6	З.	The Normal Distribution N(20, 4^2).	oution
		(a) Given that $P(X < a) = 0.1$, find <i>a</i> .	[1]
		(b) Given that P ($b < X < c$) = 0.95, find a possible pair of values of <i>b</i> and <i>c</i> .	[2]
7	7.	The heaviest 17% of rococo apples are classified as large, and the lightest 17% are classified as small. The remainder are classified as medium. The limits within which the masses of medium rococo apples lie are 96 g and 120 g. Stating a necessary assumption, estimate the mass of the heaviest rococo apple.	[4]
8	3. The ma	e masses, X grams, of tomatoes are normally distributed. Half of the tomatoes have sses greater than 56.0 g and 70% of the tomatoes have masses greater than 53.0 g \propto	J.
	(a)	Find the percentage of tomatoes with masses greater than 59.0 g.	[2]
	(b)	Find the percentage of tomatoes with masses greater than 65.0 g.	[4]
	(c)	Given that $P(a < X < 50) = 0.1$, find <i>a</i> .	[3]
^{9.} (a)	The (i)	e variable X has the distribution N(20, 9). Find P($X > 25$).	[1]
	(ii)	Given that $P(X > a) = 0.2$, find a.	[1]
	(iii)	Find <i>b</i> such that P(20 – <i>b</i> < <i>X</i> < 20 + <i>b</i>) = 0.5.	[3]
(b)	The	$\frac{\mu^2}{9}$ Find D(Vi. 1.5.)	[3]

The variable Y has the distribution N(μ , $\frac{1}{9}$). Find P(Y>1.5 μ).

[3]

^{10.} In this question you must show detailed reasoning.

The probability that Paul's train to work is late on any day is 0.15, independently of other days.

The number of days on which Paul's train to work is late during a 450-day period is (a) denoted by the random variable *Y*. Find a value of *a* such that $P(Y > a) \approx \frac{1}{6}$

In the expansion of $(0.15 + 0.85)^{50}$, the terms involving 0.15^r and 0.15^{r+1} are denoted by T_r and T_{r+1} respectively.

(b)
$$\frac{T_r}{T_{r+1}} = \frac{17(r+1)}{3(50-r)}$$
 [3]

- (c) The number of days on which Paul's train to work is late during a 50-day period is
 - " modelled by the random variable X.
 - (i) Find the values of r for which $P(X = r) \le P(X = r + 1)$. [4]
 - (ii) Hence find the most likely number of days on which the train will be late during a 50day period. [2]

^{11.} The finance department of a retail firm recorded the daily income each day for 300 days. The results are summarised in the histogram.

- (a) Find the number of days on which the daily income was between £4000 and £6000. [3]
- (b) Calculate an estimate of the number of days on which the daily income was between $\pounds 2700$ and $\pounds 3600$.
- (c) Use the midpoints of the classes to show that an estimate of the mean daily income is $\pounds 3275$. [2]

An estimate of the standard deviation of the daily income is $\pounds 1060$. The finance department uses the distribution N(3275, 1060²) to model the daily income, in pounds.

(d) Calculate the number of days on which, according to this model, the daily income would be between £4000 and £6000.

[2]

[3]

It is given that approximately 95% of values of the distribution $N(\mu, \sigma^2)$ lie within the range (e) $\mu, \pm 2\sigma$. Without further calculation, use this fact to comment briefly on whether the proposed model is a good fit to the data illustrated in the histogram. [2] 12. A fair dice is thrown 1000 times and the number, *X*, of throws on which the score is 6 is noted.

(a)	(i)	State the distribution of X.	[1]
	(ii)	Explain why a normal distribution would be an appropriate approximation to the distribution of <i>X</i> .	[1]
(b)	Use ; <i>b</i>) ≈	a normal distribution to find two positive integer values, <i>a</i> and <i>b</i> , such that $P(a < X < 0.4)$.	[5]
(C)	For y < <i>b</i>),	our two values of <i>a</i> and <i>b</i> , use the distribution of part (a)(i) to find the value of $P(a < X \text{ correct to 3 significant figures.}$	[2]

END OF QUESTION paper

Mark scheme

Que	stion	Answer/Indicative content	Marks	Part marks and guidance	
1	i	$\frac{\mu-40}{\sigma} = 0.9544$	M1	Standardise with μ and σ and equate to Φ^{-1} , allow σ^2 but not \sqrt{n} , allow 1–, cc, wrong signs. P(): M0 here. But can recover both marks from part (ii).	
				[0.954, 0.955] seen	
				Examiner's Comments	
	i		B1	Placing a question about finding normal parameters in the context of a frequency distribution did not worry most candidates, though some inevitably attempted to use a factor of $\sqrt{100}$ in the standard deviation. Signs were generally well handled, and the correct answers were often seen. Only a few used 0.17 or 0.25 in their equations, but continuity corrections in this context continue to be seen quite often. If the distribution is stated to be normal then a continuity correction must not be used.	
	ii	$\frac{60-\mu}{\sigma} = 0.674(5)$	M1	Standardise as in (i) but do not give if "1 –" or wrong signs in <i>either</i> equation	
	ii		B1	[0.674, 0.675] seen. (Other errors lead to loss of A marks.)	
	ii	Solve to get $\sigma = 12.3$ [12.278]	A1	σ, a.r.t. 12.3, cwo	
				μ, a.r.t. 51.7, cwo [NB: <i>CAREI</i> either or both can be obtained from wrong equns.] {note for scoris zoning – (i) to be visible in marking (ii)}	
	ii	μ = 51.7(18)	A1	Placing a question about finding normal parameters in the context of a frequency distribution did not worry most candidates, though some inevitably attempted to use a factor of $\sqrt{100}$ in the standard deviation. Signs were generally well handled, and the correct answers were often seen. Only a few used 0.17 or 0.25 in their equations, but continuity corrections in this context continue to be seen quite often. If the distribution is stated to be normal then a continuity correction must not be used.	

	iii	Based on a sample / small sample, etc	В1	Any similar comment, e.g. "frequencies not probabilities" (but not <i>just</i> " <i>n</i> is small") and no wrong comments. Not "because data is grouped". No scattergun. Examiner's Comments Many candidates realised that the probabilities were based on only a sample rather than on the whole population. However, there were also many who attempted to use a familiar answer to a different question, namely the routine answer to S1 questions about why calculations of sample mean and variance were not exact: "you don't know the exact data values, only the ranges". Others said "it's only approximately a normal", even though it was clearly stated in the question that the distribution <i>was</i> normal.	The Normal Distribution
		Total	7		
2		$\frac{150-\mu}{\sigma} = 2.00$	M1	Standardise with σ,μ at least once, ignore cc, $\sqrt{}$ errors, equate to z	<i>z</i> not used, e.g. equated to 0.0228 and 0.9332 or 0.5092 and 0.8246: max M0M1
		$\frac{143 - \mu}{2} = -1.5$	A1	Both LHS and signs of RHS correct	One z, one not: M1A0B0
		σ	B1	Both z-values correct to 3 SF	
			M1	Correct method for solution	Withhold if elimination done wrongly
		Solve to get	A1	μ ε [145.95, 146.05) www	√ σ or σ²: can get M1A0B1M1A1A0
				$\mu \in [1.995, 2.005) \text{ or } \mu^2 = 4 \text{ www}$	
		μ = 146, σ = 2	A1	Examiner's Comments	cc: M1A0B1M1A0A0
				A very confident start to the paper by many. Fully correct answers were common, though inevitably there were some who made sign errors or who failed to use the tables in reverse.	
		Total	6		

3		$\frac{1.03-1.00}{\sigma} = 1.645$	M1 dep*	Standardise and equate to Φ^{-1} , allow wrong sign, σ^2 , 1–, cc etc	The Normal Distribution
			A1	All correct apart possibly from value of Φ^{-1}	
			B1	1.645 seen anywhere, allow –1.645, can be implied	
		[σ = 0.0182 ≈ ^{6/329}]	*M1	Solve to find σ , or eliminate σ , dependent on first M1	
		$1 - \Phi\left(\frac{1.05 - 1.03}{\sigma}\right) = 1 - \Phi(1.0966)$	M1	Standardise with μ = 1.03, use Φ , answer < 0.5, allow $\sqrt{\text{errors}}$	
				Final answer in range [0.1355, 0.137] or [13.55%, 13.7%], must be from positive σ , not from σ^2 0.1333 from σ = 0.018 is 5+A0	
		= 1 - 0.8635 = 0.1365 or 13.6(5)%	A1	Examiner's Comments	
				There were many fully correct answer to this question, with only a few making the usual mistakes such as sign errors, use of σ^2 instead of σ , or 0.05 instead of 1.645. 13.6(5)%.	
		Total	6		
		N (178, 8²) and X< 194 oe	M1(AO1.1)	Soi	
4	а	P(X<194) = 0.977(249868)	A1(AO1.1) A1(AO1.1)	BC	
		0.977249868 ³ = 0.933 (3 s.f.)	[3]		
	b	E.g. inflection –mean $\underline{1}$ E.g. $\underline{2}$ (97.5th percentile – mean)	M1(AO1.1a)	E.g. $170 - 163$ Figures are illustrative onlyE.g. $\frac{1}{2}(176 - 163)$	

		E.g. $\frac{1}{6}$ 99.7th percentile – 0.3th percentile) = 6 to 7	A1(AO1.1) E1(AO2.4)	E.g. $\frac{1}{6}(183 - 145)$ The Normal Distribution
		E.g. Point of inflection is 1 sd from mean E.g. 95% of values within (approx) 2 sds of mean E.g. Almost all within (approx) 3 sds of mean	[3]	Statement matching method used
		Total	6	
5	а	Symmetrical, high in middle, tails off at ends	B1(AO2.4) [1]	Any two of these Not just bell shaped
		a. P(35 < <i>m</i> < 45) = 0.296	M1(AO3.4)	Correct probability attempted
	b	Predicted no. = 30	A1(AO1.1) [2]	Allow 29.6 or '29 or 30'
		b. P(<i>m</i> < 25) = 0.0122	M1(AO3.4)	Correct probability attempted
	с	Predicted no. = 1	A1(AO1.1) [2]	Allow 1.2 or '1 or 2'
	d	29.6 close to 29 and 1.2 close to 0 Hence model (could be) suitable	B1(AO3.5a) [1]	Both neededOR B1 Model predicts some masses below 25 g, hence not suitable
	е	E.g. Weather may cause different distribution	B1(AO3.5b) [1]	Any sensible reason why next year may be different
		Total	7	

6	а	14.9 (3 sf)	B1(AO 1.1) [1]	BC	The Normal Distribution
	b	0.975 seen or implied c = 27.8, b = 12.2 (3 sf)	M1(AO 1.1a) A1(AO 1.1) [2]	Other solutions are possible	
		Total	3		
7		Assume masses normally distr. 66% of masses lie approximately within $\mu \pm \sigma$ and greatest mass $\approx \mu \pm 3\sigma$ sd = 0.5(120 - 96) (= 12) Greatest mass = 120 + 2×12 = 144 (g)	B1(AO 1.2) M1(AO 3.1b) M1(AO 1.1) A1(AO 1.1) [4]	or similar both stated or implied or greatest mass $=\frac{96+120}{2} + 3 \times 12 = 144$ Allow 144 to 145	
		Total	4		
8	а	$\mu = 56$ Percentage with masses > 59 g = 30%	B1(AO 1.1a) B1(AO 1.1) [2]	or 0.3	

					The Normal Distribution
		$\Phi\left(\frac{53-56}{2}\right) = 0.3, \frac{53-56}{2} = -0.5244$	M1(AO 2.1)		
		σ) σ	A1(AO 1.1)		
	b	<i>σ</i> = 5.721	M1(AO 2.4)		
		X~ N(56, '5.721'²) soi	A1(AO 1.1)	or $P(X > 65) = P(z > \frac{65-56}{5.721})$	
		P(X > 65) = 0.0578 or 5.78% (3 sf)	[4]	=P(z >1.573) ft their σ	
				Or BC	
		P(X < 50) = 0.1471	M1(AO		
		(((((((((((((((((((A1(AO 2 1)		
	с	P(<i>X</i> < <i>a</i>) = 0.0471)	A1(AO 1 1)		
		a - 46 4 /3 sft			
		a - 40.4 (0 SI)	[3]		
		Total	9		
		0.0478 or 0.048 (2 sf)	B1 (AO 1.1)		
		(i)	[1]	BC	
9	а			Examiner's Comments	
		22.5 or 23 (2 sf)		Most candidates answered this question correctly. A few used a standard deviation of 9.	
		(11)	B1		

		(AO 1.1)	BC	The Normal Distribution
		[1]		
	P(X < 20 + b) = 0.75 or P(X > 20 + b) = 0.25		Examiner's Comments	
	(iii) $P(X \ge 20 + b) = 0.23$ 20 + b = 22.02 or 22.0 or 22		Some candidates found $\Phi^{-1}(0.2) = 17.5$. A few used a standard deviation of 9	
	<i>b</i> = 2.02 or 2.0 (2 sf) Allow <i>b</i> = 2	M1		
		(AO 1.1a) A1 (AO 1.1)	P(X < 20 - b) = 0.25 20 - b = 17.98 or 18	
		A1 (AO 1.1)	<i>b</i> = 22(.02) M1A1A0	
			T & I method: Try 2 values, one ≈ 2 M1	
			Correct probs for two values in	
			[2, 2.1] A1 Correct probs for two values in	
			[2, 2.05] & ans 2.0 or 2 A1 (0.495 & 0.516)	
		[3]		
			Examiner's Comments	
			Many candidates could not make the first step, which is to move from the given probability of 0.5 to a probability of either 0.25 or 0.75	

'67.:	.5' + \sqrt{'57.375}	M1 (AO 1.2)		P(X > 75) = 0.145 both	The Normal Distribution
or '67	07.5' + 0.9674× √'57.375'	A1 (AO 1.1)	or 74.83 seen; ft their μ & σ for M1 only	<i>a</i> = 74 or 75 or 76	
		[3]	Integer. No ft Dep M1M1 Correct ans, inadequate wking: M0M0A0 NB 450/6 = 75 M0M0A0		
			Examiner's Comments Because this question required "detailed reasons score full marks. Thus, for example, some car $5 \\ 6 \\ X \sim B(450. 0.15); P(X < a) = ;$; X = 75. These scored only one mark.		
			Trial and improvement methods only scored n the distribution fully described <u>and</u> with at leas relevant probabilities actually seen.		
			The better method was to use the normal app $\underline{\frac{2}{3}}_{\text{of values lie within}}$	proximation to the binomial and the fact that	
			the range $\mu - \sigma < X < \mu + \sigma$.		

$$\begin{bmatrix} \frac{50}{r(50-r)!} \times 0.15^r \times 0.85^{50-r} \\ \frac{50}{(r+1)!} \times 0.15^{r+1} \times 0.85^{50-r} \\ \frac{50}{(r+1)!} \times 0.15^{r+1} \times 0.85^{50-r+1} \\ \frac{50}{(r+1)!} \times 0.15^{r+1} \times 0.85^{50-r+1} \\ \frac{50}{(r+1)!} \times 0.15^{r+1} \times 0.85^{50-r+1} \\ \frac{1}{3(50-r)!} \\ \frac{1}{3(50$$

					The Normal Distribution
				<i>r</i> < correct expr'n	
	<i>r</i> ≤ 6.65	A1 (AO 1.1)			
		A1 (AO 1.1)			
	r is an integer so $r \le 6$				
			SC:		
			P(X=6)=0.142,		
			P(<i>X</i> =7)=0.157,		
			P(X=8)=0.149		
		[4]			
			B1		
			(must be these three)	No wking B0B0	
			hence $r \le 6 B1 dep$		
			Examiner's Comments		
			Many candidates did not see the connection w	with part (b). These went back to the binomial	
			distribution but very few succeeded. Some ca	indidates carried out a correct method but	
			stopped after obtaining $r \le 6.65$. Others found trial and improvement method aculd acore a r	$r \le 6.65$ but then gave the answer $r = 6$. A	
				naximum of 2 marks in this question.	

		$P(X = r) \le P(X = r + 1) \text{ for } r \le 6$ Hence most likely value is <i>r</i> is 6 or 7 (ii) $\frac{P(X=6)}{P(X=7)} = \frac{17(6+1)}{3(50-6)} = 0.902 < 1$ Most likely value is 7	B1 (AO 2.1) B1 (AO 3.2a) [2]	or $P(X = 6) = 0.142 \& P(X = 7) = 0.157$ indep, but dep on some reasonable explanation Examiner's Comments Almost no candidates gave a correct solution used trial and improvement, but did not consist were required). Some rounded their figure of 6 any marks.	NOT 6.65 rounds to 7 B0B0 No expl'n: B0B0 based on their answer to part (c)(i). Some der enough values of <i>X</i> . (At least <i>X</i> = 6 and 7 6.65 from part (c)(i) to 7. This did not score	The Normal Distribution
		Total	12			
11	а	Total area = 500 small squares $\frac{100}{500} \times 300$ $= 60 \text{ (days)}$	B1 (AO1.2) M1 (AO1.1a) A1 (AO1.1) [3]	or 20 cm ² or other units or $\frac{4}{20} \times 300$ or equivalent	May be implied	
	b	<u>3×15+5×25+1×15</u> × 300 = 111	M1 (AO2.1) M1 (AO1.1) A1 (AO1.1) [3]	M1 for denom & one term in num M1 M1 for correct × 300	oe in other units	

	c	Frequencies: 30, 90, 75, 45, 60 $\frac{\Sigma f x}{300} = \frac{982500}{300} \qquad (= 3275 \text{ AG})$	M1 (AO3.1a) A1 (AO1.1) [2]	Allow multiples of these correctly obtain 3275	T	The Normal Distribution
	c	P(4000 < x < 6000) × 300 = 0.2419 × 300 = 72.57 so 73 days	M1 (AO3.4) A1 (AO1.1) [2]	Attempted, using N(3275, 1060 ²) BC accept truncation to 72 days		
	e	3270 + 2 × 1060 = 5395 In histogram, well over 2.5% of values are above 5395, so model not a good fit	B1 (AO3.4) E1 (AO2.2b) [2]			
12	e	(i) X is binomial (ii) Large <i>n</i>	B1 (AO 3.3) [1] B1 (AO 3.3) [1]			
	Ł	$X \sim N(\frac{500}{3}, \frac{1250}{9})$ e.g. P(X < b) = 0.7 $b = 173 \text{ or } 174$ $a = \frac{500}{3} - ((173 \text{ or } 174) - \frac{500}{3})$ $= 160 \text{ or } 159$	B1 (AO 1.2) M1 (AO 3.4) A1 (AO 1.1) M1 (AO 3.4) A1 (AO 1.1) [5]	soi; allow N(167, 139) Other conscore sin $\Phi^{-1}(0.9)$ BC = 181 or P(X < a) = 0.3	rrect methods nilarly eg	

]	The Normal Distribution
		$X \sim Bin(1000, \frac{1}{6})$					
	с	eg P(160 < X < 173) or P(159 < X < 174)	M1 (AO		D(166 + V + 101)		
		= 0.69218 - 0.30280 or 0.72108 - 0.27355	3.4) A1 (AO 1 1)	BC	$P(100 < \lambda < 181)$ 0.87010 $-$ 0.40812		
		= 0.389 (3 sf) or 0.448 (3 sf)	[2]	NB ft their a and b	= 0.381 (3 sf)		
		Total	9				