- 1. The probability distribution of the random variable X is given by the formula $P(X = r) = k(r^2 1)$ for r = 2, 3, 4, 5.
 - i. Show the probability distribution in a table, and find the value of *k*.
- 2. The probability distribution for the discrete random variable *X* is shown in Fig. 3.

X	0	1	2	3	4
P(X=x)	0.4 <i>a</i>	0.5 <i>a</i>	0.3 <i>a</i>	0.2 <i>a</i>	0.1 <i>a</i>

Fia		Q
гıy	•	S

- (a) Calculate the value of the constant *a*.
- (b) Calculate $P(X \ge 2)$.

3. The probability distribution of the discrete random variable *X* is given in Fig. 4.

r	0	1	2	3	4					
$P(X=\prime)$	0.2	0.15	0.3	k	0.25					
Fig. 4										

(a) Find the value of *k*.

 X_1 and X_2 are two independent values of X.

(b) Find $P(X_1 + X_2 = 6)$.

[2]

[3]

[2]

[3]

- [2]
- [1]

4. The discrete random variable X takes the values r = 0, 1, 2, 3, 4 with probabilities

$$P(X = r) = k(r + 1)(r + 2).$$

- (a) Calculate the value of the constant *k*.
- (b) Calculate P(X < 3), giving your answer as a fraction in its lowest terms. [2]
- 5. Roxanne is employed by an employment agency called Supertemps. In any given week she may be required to work up to a maximum of 5 days.

Both Roxanne and her partner, Alex, suggest ways in which the number of days, *X*, Roxanne is required to work in a week may be modelled.

- Roxanne thinks that X may be modelled using the discrete uniform distribution.
- Alex suggests the following formula to model the probability distribution of *X*.

$$P(X = x) = k(2x - 5)^2$$
 for $x = 0, 1, 2, 3, 4, 5$.

(a) Calculate the value of *k* for Alex's model.

Alex and Roxanne record the number of days Roxanne is required to work in each of the first 42 weeks of her employment. The results are summarised in Fig. 9.

Number of days	0	1	2	3	4	5
Frequency	13	7	1	0	7	14

Fig. 9

(b) Investigate how well each model fits the data.

END OF QUESTION paper

ot

[6]

[2]

[2]

Mark scheme

Qu	estion	Answer/Indicative content	Marks	Part marks and guidance			
1	i	r 2 3 4 5 $P(X=r)$ $3k$ $8k$ $15k$ $24k$		For correct table (ito <i>k</i> or correct probabilities 0.06, 0.16, 0.30, 0.48)			
	i	3k + 8k + 15k + 24k = 1	M1		For their four multiples of k added and = 1.		
				or <i>k</i> = 1/50 (with or without working) Examiner's Comments			
	i	<i>k</i> = 0.02	A1	Nearly all candidates were able to calculate the correct coefficients of <i>k</i> and sum the terms to get 50 <i>k</i> . Work was generally neatly presented and well structured. Only a very few candidates failed to get the correct answer of 1/50. A small number of candidates did not show the probabilities in a table, thus losing 1 mark.	Allow M1A1 even if done in part (ii) – link part (ii) to part (i)		
		Total	3				
		0.4 <i>a</i> + 0.5 <i>a</i> + 0.3 <i>a</i> + 0.2 <i>a</i> + 0.1 <i>a</i> = 1 soi	M1(AO1.1b)				
2	а	$a = \frac{2}{3}$	A1(AO1.1b)				
			[2]				
	b	$\frac{2}{3}(0.3+0.2+0.1)$	M1(AO1.1b)	their $\frac{2}{3}$			

			A1(AO1.1b)		Discrete Probability Distributions
		0.4			
			[2]		
			B1(AO1.2)		
	с	positive skew			
			[1]		
		Total	2		
		0.2 + 0.15 + 0.3 + <i>k</i> + 0.25 = 1 oe	M1(AO1.1)		
3	а		A1(AO1.1)		
			[0]	Examiner's Comments	
		<i>k</i> = 0.1	[2]	Candidates generally did this correctly, with many	
				showing exactly the working given in the mark	
				Or	
		<i>k</i> ² seen	M1(AO3.1a)	seen	
			M1(AO1.1)	Allow slip og	
	b	$0.3 \times 0.25 \times 2 + k^2$	A1(AO1 1)	omission of for M1M1	
				2; or	
		0.16	[3]	2	

				Examiner's Comments	Discrete Probability Distributions
				This part caused considerable difficulty, with some candidates omitting it, others drawing a possibility space with equally likely outcomes, and others copying information from the table given in the question. Candidates who realised that a total of 6 could be made either from 3 and 3 or else from 2 and 4 sometimes did not realise that 4 and 2 is also possible; others thought the probability of 3 and 3 had to be counted twice.	
		Total	5		
4	а	$k(1 \times 2 + 2 \times 3 + 3 \times 4 + 4 \times 5 + 5 \times 6) = 1$ $k = \frac{1}{70}$	M1 (AO1.1) A1 (AO1.1) [2]		
	b	$\frac{2+6+12}{70} = \frac{2}{7}$	M1 (AO1.1) A1 (AO1.1) [2]	FT their k Allow 1. P($X \le 3$) method	
		Total	4		
5	а	$k(25+9+1+1+9+25) = 1$ $k = \frac{1}{70}$	M1 (AO 3.3) A1(AO 1.1) [2]		
	b	Roxannes model day 0 1 2 3 4 5			

f _e		7	7	7	7	7	7		B1 (AO 3.4)		Discrete Probability Distributions
Corr Alex:	rect for 1 is model	and 4 c	lays, but oth	nerwise a po	oor fit				B1(AO 3.5a)		
da s	ıy	0	1	2	3	4	5		M1(AO 3.4)		
f _e		15	5.4	0.6	0.6	5.4	15		A1(AO 1.1)		
The be a	expecte a good fit	d freque t.	ncies are all	within 2 of	the observe	ed frequenc	ies, so Alex	's model appears to	B1(AO 2.4) B1(AO 3.5a) [6]	A0 if expected frequencies are rounded to nearest integer	
Tota	l								8		I