Questions

Q1.

The Venn diagram shows the probabilities for students at a college taking part in various sports.

A represents the event that a student takes part in Athletics.
T represents the event that a student takes part in Tennis.
C represents the event that a student takes part in Cricket. p and q are probabilities.

The probability that a student selected at random takes part in Athletics or Tennis is 0.75
(a) Find the value of p.
(b) State, giving a reason, whether or not the events A and T are statistically independent. Show your working clearly.
(c) Find the probability that a student selected at random does not take part in Athletics or Cricket.

Q2.

A factory buys 10% of its components from supplier $A, 30 \%$ from supplier B and the rest from supplier C. It is known that 6% of the components it buys are faulty.

Of the components bought from supplier $A, 9 \%$ are faulty and of the components bought from supplier $B, 3 \%$ are faulty.
(a) Find the percentage of components bought from supplier C that are faulty.

A component is selected at random.
(b) Explain why the event "the component was bought from supplier B " is not statistically independent from the event "the component is faulty".

Q3.

A biased spinner can only land on one of the numbers $1,2,3$ or 4 . The random variable X represents the number that the spinner lands on after a single spin and $\mathrm{P}(X=r)=\mathrm{P}(X=r+$ 2) for $r=1$, 2

Given that $\mathrm{P}(X=2)=0.35$
(a) find the complete probability distribution of X.

Ambroh spins the spinner 60 times.
(b) Find the probability that more than half of the spins land on the number 4

Give your answer to 3 significant figures.

The random variable $Y=\frac{12}{X}$
(c) Find $\mathrm{P}(Y-X \leq 4)$

Q4.

The Venn diagram shows three events, A, B and C, and their associated probabilities.

Events B and C are mutually exclusive.
Events A and C are independent.
Showing your working, find the value of x, the value of y and the value of z.

Q5.

A fair 5 -sided spinner has sides numbered 1, 2, 3, 4 and 5
The spinner is spun once and the score of the side it lands on is recorded.
(a) Write down the name of the distribution that can be used to model the score of the side it lands on.

The spinner is spun 28 times.
The random variable X represents the number of times the spinner lands on 2
(b) (i) Find the probability that the spinner lands on 2 at least 7 times.
(ii) Find $\mathrm{P}(4 \leq X<8)$

Q6.

In a game, a player can score $0,1,2,3$ or 4 points each time the game is played.
The random variable S, representing the player's score, has the following probability distribution where a, b and c are constants.

s	0	1	2	3	4
$\mathrm{P}(S=s)$	a	b	c	0.1	0.15

The probability of scoring less than 2 points is twice the probability of scoring at least 2 points.

Each game played is independent of previous games played.
John plays the game twice and adds the two scores together to get a total.
Calculate the probability that the total is 6 points.

Q7.

Afrika works in a call centre.
She assumes that calls are independent and knows, from past experience, that on each sales call
that she makes there is a probability of $\frac{1}{6}$ that it is successful.
Afrika makes 9 sales calls.
(a) Calculate the probability that at least 3 of these sales calls will be successful.

The probability of Afrika making a successful sales call is the same each day.
Afrika makes 9 sales calls on each of 5 different days.
(b) Calculate the probability that at least 3 of the sales calls will be successful on exactly 1 of these days.

Rowan works in the same call centre as Afrika and believes he is a more successful salesperson.

To check Rowan's belief, Afrika monitors the next 35 sales calls Rowan makes and finds that 11 of the sales calls are successful.
(c) Stating your hypotheses clearly test, at the 5% level of significance, whether or not there is evidence to support Rowan's belief.

Q8.

The Venn diagram, where p is a probability, shows the 3 events A, B and C with their associated probabilities.
(a) Find the value of p.
(b) Write down a pair of mutually exclusive events from A, B and C.

Q9.

Two bags, A and B, each contain balls which are either red or yellow or green.
Bag A contains 4 red, 3 yellow and n green balls.
Bag B contains 5 red, 3 yellow and 1 green ball.
A ball is selected at random from bag \mathbf{A} and placed into bag \mathbf{B}.
A ball is then selected at random from bag \mathbf{B} and placed into bag \mathbf{A}.
The probability that bag A now contains an equal number of red, yellow and green balls is p.
Given that $p>0$, find the possible values of n and p.

Q10.

Helen believes that the random variable C, representing cloud cover from the large data set, can be modelled by a discrete uniform distribution.
(a) Write down the probability distribution for C.
(b) Using this model, find the probability that cloud cover is less than 50%

Helen used all the data from the large data set for Hurn in 2015 and found that the proportion of days with cloud cover of less than 50% was 0.315
(c) Comment on the suitability of Helen's model in the light of this information.
(d) Suggest an appropriate refinement to Helen's model.

Q11.

Magali is studying the mean total cloud cover, in oktas, for Leuchars in 1987 using data from the large data set. The daily mean total cloud cover for all 184 days from the large data set is summarised in the table below.

Daily mean total cloud cover (oktas)	0	1	2	3	4	5	6	7	8
Frequency (number of days)	0	1	4	7	10	30	52	52	28

One of the 184 days is selected at random.
(a) Find the probability that it has a daily mean total cloud cover of 6 or greater.

Magali is investigating whether the daily mean total cloud cover can be modelled using a binomial distribution.

She uses the random variable X to denote the daily mean total cloud cover and believes that $X \sim B(8,0.76)$

Using Magali's model,
(b) (i) find $\mathrm{P}(X \geq 6)$
(ii) find, to 1 decimal place, the expected number of days in a sample of 184 days with a daily mean total cloud cover of 7
(c) Explain whether or not your answers to part (b) support the use of Magali's model.

There were 28 days that had a daily mean total cloud cover of 8
For these 28 days the daily mean total cloud cover for the following day is shown in the table below.

Daily mean total cloud cover (oktas)	0	1	2	3	4	5	6	7	8
Frequency (number of days)	0	0	1	1	2	1	5	9	9

(d) Find the proportion of these days when the daily mean total cloud cover was 6 or greater.
(e) Comment on Magali's model in light of your answer to part (d).

Q12.

The discrete random variable D has the following probability distribution

d	10	20	30	40	50
$\mathrm{P}(D=d)$	$\frac{k}{10}$	$\frac{k}{20}$	$\frac{k}{30}$	$\frac{k}{40}$	$\frac{k}{50}$

where k is a constant.
(a) Show that the value of k is $\frac{600}{137}$

The random variables D_{1} and D_{2} are independent and each have the same distribution as D.
(b) Find $\mathrm{P}\left(D_{1}+D_{2}=80\right)$

Give your answer to 3 significant figures.

A single observation of D is made.
The value obtained, d, is the common difference of an arithmetic sequence.
The first 4 terms of this arithmetic sequence are the angles, measured in degrees, of quadrilateral Q
(c) Find the exact probability that the smallest angle of Q is more than 50°

Q13.

The discrete random variable X has the following probability distribution

x	a	b	c
$\mathrm{P}(X=x)$	$\log _{36} a$	$\log _{36} b$	$\log _{36} c$

where

- $\quad a, b$ and c are distinct integers ($a<b<c$)
- all the probabilities are greater than zero
(a) Find
(i) the value of a
(ii) the value of b
(iii) the value of c

Show your working clearly.
The independent random variables X_{1} and X_{2} each have the same distribution as X
(b) Find $\mathrm{P}\left(X_{1}=X_{2}\right)$

Q14.

(a) State one disadvantage of using quota sampling compared with simple random sampling.

In a university 8% of students are members of the university dance club.
A random sample of 36 students is taken from the university.
The random variable X represents the number of these students who are members of the dance club.
(b) Using a suitable model for X, find
(i) $\mathrm{P}(X=4)$
(ii) $\mathrm{P}(X \geq 7)$

Only 40% of the university dance club members can dance the tango.
(c) Find the probability that a student is a member of the university dance club and can dance the tango.

A random sample of 50 students is taken from the university.
(d) Find the probability that fewer than 3 of these students are members of the university dance club and can dance the tango.

Mark Scheme

Q1.

Question	Scheme	Marks	AOS	
(a)	$p=[1-0.75-0.05=] \underline{0.20}$	B1	1.1b	
		(1)		
(b)	$q=0.15$	B1ft	1.1b	
	$\mathrm{P}(A)=0.35 \quad \mathrm{P}(T)=0.6 \quad \mathrm{P}(A$ and $T)=0.20 \quad \mathrm{P}(A) \times \mathrm{P}(T)=0.21$	M1	2.1	
	Since $0.20 \neq 0.21$ therefore A and T are not independent	A1	2.4	
		(3)		
(c)	$\mathrm{P}(\operatorname{not}[A$ or $C])=\underline{\mathbf{0 . 4 5}}$	B1	1.1b	
		(1)		
(5 marks)				
Part	Notes			
(b)	B1cao for $p=0.20$			
	B1ft for use of their p and $\mathrm{P}(A$ or $T)$ to find q i.e. $0.75-$ " p " -0.40 or $q=0.15$			
	M1 for the statement of all probabilities required for a suitable test and sight of any appropriate calculations required.			
	A1 All probabilities correct, correct comparison and suitable comment.			
(c)				

Q2.

Qu	Scheme	Marks	0
(a) (b)	[Let $p=\mathrm{P}(F \mid C)$] Tree diagram or some other method to find an equation for p $0.1 \times 0.09+0.3 \times 0.03+0.6 \times p=0.06 \quad p=0.07 \quad \text { i.e. } 7 \%$ e.g. $\mathrm{P}(B$ and $F)=0.3 \times 0.03=0.009$ but $\mathrm{P}(B) \times \mathrm{P}(F)=0.3 \times 0.06=0.018$ These are not equal so not independent	$\begin{array}{ll}\text { M1 } & \\ \text { A1 } & \\ \text { A1 } & \\ & \\ & \text { (3) } \\ \text { B1 } & \\ \text { Bra } \\ & \\ & \text { (1) }\end{array}$	2.1 1.1 b 1.1 b
		(4 marks)	
	Notes		
(a)	M1 for selecting a suitable method to find the missing probability e.g. sight of tree diagram with $0.1,0.3,0.6$ and $0.09,0.03, p$ suitably placed e.g. sight of VD with 0.009 for $A \cap F$ and $B \cap F$ and $0.6 p$ suitably placed or attempt an equation with at least one correct numerical and one " p " product (not necessarily correct) on LHS or for sight of $0.06-(0.009+0.009)$ (o.e. e.g. $6-1.8=4.2 \%$) $1^{\text {st }}$ A1 for a correct equation for p (May be implied by a correct answer) or for the expression $\frac{0.06-(0.009+0.009)}{0.6}$ (o.e.) $2^{\text {nd }} \mathrm{A} 1$ for 7% (accept 0.07) Correct Ans: Provided there is no incorrect working seen award 3/3 e.g. may just see tree diagram with 0.07 for p (probably from trial and improv') B1 for a suitable explanation... may talk about $2^{\text {nd }}$ branches on tree diagram and point out that $0.03 \neq 0.06$ but need some supporting calculation/words Can condone incorrect use of set notation (it is not on AS spec) provided the rest of the calculations and words are correct.		

Q3.

Q4.

Question	Scheme	Marks	AOs
	$x=0$	B1	2.2a
	$\mathrm{P}(A)=0.1+z+y \quad \mathrm{P}(C)=0.39+z[+x] \quad \mathrm{P}(A$ and $C)=z$	M1	2.1
	$\mathrm{P}(A$ and $C)=\mathrm{P}(A) \times \mathrm{P}(C) \rightarrow z=(0.1+z+y) \times(0.39+z[+x])$	M1	1.1 b
	$\begin{aligned} & {\left[\sum p=1\right]} \\ & 0.06+0.3+0.39+0.1+z+y[+x]=1 \rightarrow \quad[z+y[+x]=0.15] \end{aligned}$	M1	1.1b
	Solving (simultaneously) leading to $z=0.13 \quad y=0.02$	A1	1.1 b
			marks

Notes

B1: for $x=0$, may be seen on Venn diagram
M1: Identifying the probabilities required for independence and at least 2 correct These must be labelled
If there are no labels, then this may be implied by $z=(0.1+z+y)(0.39+z[+x])$, allow one numerical slip

Allow e.g.
$\mathrm{P}\left(A^{\prime}\right)=0.39+0.30+0.06[+x] \quad \mathrm{P}(C)=0.39+z[+x] \quad \mathrm{P}\left(A^{\prime}\right.$ and $\left.C\right)=0.39$
[Not on spec. but you may see use of conditional probabilities]
M1: Use of independence equation with their labelled probabilities in terms y, z [and $x]$
All their probabilities must be substituted into a correct formula
Sight of a correct equation e.g. $z=(0.1+z+y)(0.39+z[+x])$ scores M1M1
M1: Using $\Sigma p=1$
Implied by $[x+] y+z=0.15$
or their $x+y+z=0.15$ where x, y, and z are all probabilities or e.g. $\mathrm{P}(A)=0.25$
A1: both $y=0.02$ and $z=0.13$

Q5.

Question	Scheme	Marks	AOs
(a)	(Discrete) uniform (distribution)	B1	1.2
		(1)	
(b)	$\mathrm{B}(28,0.2)$	B1	3.3
(i)	$\mathrm{P}(X \geq 7)=1-\mathrm{P}(X \leq 6)[=1-0.6784 \ldots]$	M1	3.4
	awrt 0.322	A1	1.1b
(ii)	$\mathrm{P}(4 \leq X<8)=\mathrm{P}(X \leq 7)-\mathrm{P}(X \leq 3)[=0.818 \ldots-0.160 \ldots]$	M1	3.1b
	awrt $\underline{0.658}$	A1	1.1b
		(5)	
(6 marks)			
Notes			
(a)	Continuous uniform is B0		
(b)	B1: for identifying correct model, $\mathrm{B}(28,0.2)$ allow B, bin or binomial may be implied by one correct answer or sight one correct probability i.e. awrt 0.678 , awrt 0.818 or awrt 0.160 $\mathrm{B}(0.2,28)$ is B 0 unless it is used correctly		
(i)	M1: Writing or using $1-\mathrm{P}(X \leq 6)$ or $1-\mathrm{P}(X<7)$ A1: awrt 0.322 (correct answer only scores M1A1)		
(ii)	$\begin{aligned} & \text { M1: Writing or using } \mathrm{P}(X \leq 7)-\mathrm{P}(X \leq 3) \\ & \quad \begin{array}{l} \text { or } \mathrm{P}(X<8)-\mathrm{P}(X<4) \\ \\ \text { or } \mathrm{P}(X=4)+\mathrm{P}(X=5)+\mathrm{P}(X=6)+\mathrm{P}(X=7) \\ \text { Condone } \mathrm{P}(4) \text { as } \mathrm{P}(X=4) \text {, etc. } \end{array} \\ & \text { A1: awrt } 0.658 \text { (correct answer only scores M1A1) } \end{aligned}$		

Q6.

Question	Scheme	Marks	AOs
	Overall method	M1	2.1
	$a+b=2 c+0.5$ oe or $a+b=2(1-a-b)$	B1	2.2 a
	$a+b+c=0.75$ oe	B1	1.1 b
	$3 c=0.25 \quad\left[c=0.0833 \ldots\right.$ or $\left.\frac{1}{12}\right]$	M1	1.1 b
	P(scoring 2,4 or 4,2 or 3,3$)=2 \times " \frac{1}{12} \times 0.15+0.1^{2}$	M1	3.1 b
	$=0.035$ oe	A1cso	1.1 b
		(6)	$(6$ marks $)$

Notes

Notes		
	$\mathbf{M 1}:$	A fully correct method with all the required steps. For gaining 2 correct equations with at least one correct(allow if unsimplified). Attempting to solve to find a value of c followed by correct method to find the probability
	Bl:	Forming a correct equation from the information given in the question
	B1:	A correct equation using the sum of the probabilities equals 1
	$\mathbf{M 1}:$	Correct method for solving 2 equations to find c Implied by $c=\frac{1}{12}$
	$\mathbf{M 1}:$	Recognising the ways to get a total of 6 . Condone missing arrangments or repeats. Do not ignore extras written unless ignored in the calculation. May be implied by $m \times " \frac{1}{12} " \times 0.15+n \times 0.1^{2}$ where m and n are positive integers
	Alcso:	Cao $0.035, \frac{7}{200}$ oe

Q7.

Question	Scheme	Marks	AOs
(a)	Let $C=$ the number of successful calls. $C \square \mathrm{~B}\left(9, \frac{1}{6}\right)$	M1	3.3
	$\mathrm{P}(C \geq 3)=1-\mathrm{P}(C \leq 2)=0.1782 \ldots$ awrt 0.178	A1	1.1b
		(2)	
(b)	Let $X=$ the number of occasions when at least 3 calls are successful. $\mathrm{P}(X=1)=5 \times(" 0.1782 \ldots ") \times(" 0.8217 \ldots . . .)^{4}$	M1	1.1b
	$=0.4061 \ldots$ awrt 0.406	A1	1.1b
		(2)	
(c)	$\mathrm{H}_{0}: p=\frac{1}{6} \quad \mathrm{H}_{1}: p>\frac{1}{6}$	B1	2.5
	Let $R=$ the number of successful calls $R \square \mathrm{~B}\left(35, \frac{1}{6}\right)$	M1	3.3
	$\mathrm{P}(R \geq 11)=1-\mathrm{P}(R \leq 10)=0.02 \ldots$	A1	3.4
	There is sufficient evidence to support that Rowan has more successful sales calls than Afrika.	A1	2.2 b
		(4)	

Notes

(a)	M1:	For selecting the right model
	A1:	awrt 0.178
(b)	M1:	For $5 \times($ "their (a) " $) \times(\text { "1-their }(a) \text { " })^{4}$
	A1:	awrt 0.406
(c)	B1:	for correctly stating both hypotheses in terms of p or π Accept $p=0.16$
	M1:	For selecting a suitable model. May be implied by a correct probability or CR
	Al:	Correct probability statement and answer of 0.02 or better ($0.02318 \ldots$) (CR $R \geq 11$ and either $\mathrm{P}(R \leq 9)=0.9450$ or $\mathrm{P}(R \leq 10)=0.9768$ or $1-\mathrm{P}(R \leq 10)=0.0232)$
	A1:	Dependent on M1A1 but can ignore hypotheses. For conclusion in context supporting Rowan's belief / Rowan is a better sales person
		Do not accept Rowan can reject H_{0}

Q8.

Qu	Scheme	Marks	AO
(a)	$[p=1-(0.2+0.2+0.1+0.2)]=\underline{0.3}$	B1	1.1b
		(1)	
(b)	A and C are mutually exclusive. [NOT $\mathrm{P}(A)$ and $\mathrm{P}(C)$]	B1	1.2
		(2 marks)	
	Notes		
(a)	B1 for		
	B1 for A and $C[\mathrm{NB} A \cap C$ or $A \cap C=\varnothing$ is B0] If more than one case given they must all be correct e.g. $A \cap B$ and C		

Q9.

\begin{tabular}{|c|c|c|c|}
\hline Qu \& Scheme \& Marks \& AO \\
\hline \& \begin{tabular}{l}
Must end up with 3 of each colour or 4 of each colour \\
\(\underline{\boldsymbol{n}} \mathbf{2}\) requires \(1^{\text {st }}\) red and \(2^{\text {nd }}\) green or red from \(\mathbf{A}\) and green from B
\[
\mathrm{P}\left(1^{\text {st }} \text { red and } 2^{\text {nd }} \text { green }\right)=\frac{4}{9} \times \frac{1}{10}=\frac{4}{90} \text { or } \frac{2}{45} \quad p=\frac{2}{\underline{45}}
\] \\
\(\underline{n=5}\) requires \(1^{\text {st }}\) green and \(2^{\text {nd }}\) yellow or green from \(A\) and yellow from \(B\)
\[
\mathrm{P}\left(1^{\text {st }} \text { green and } 2^{\text {nd }} \text { yellow }\right)=\frac{5}{12} \times \frac{3}{10}=\frac{15}{120} \text { or } \frac{1}{8} \quad p=\frac{1}{\underline{8}}
\]
\end{tabular} \& \begin{tabular}{ll}
M1 \& \\
M1 \& \\
A1 \& \\
M1 \& \\
A1 \& \\
\& \\
\& \\
(5 marks)
\end{tabular} \& 3.1 b
2.2 a
1.1 b

2.2 a
1.1 b

\hline \& \multicolumn{3}{|l|}{Notes}

\hline NB \& \multicolumn{3}{|l|}{| $1^{\text {st }} \mathrm{M} 1$ for an overall strategy realising there are 2 options. |
| :--- |
| Award when evidence of both cases (3 of each colour or 4 of each colour) seen. |
| $2^{\text {nd }}$ M1 for $n=2$ and attempt at $1^{\text {st }}$ red and $2^{\text {nd }}$ green |
| May be implied by e.g. $\frac{4}{9} \times \frac{1}{9}$ |
| $1^{\text {st }} \mathrm{A} 1$ for $p=\frac{2}{\underline{45}}$ or exact equivalent |
| $3^{\text {rd }}$ M1 for $n=5$ and attempt at $1^{\text {st }}$ green and $2^{\text {nd }}$ yellow |
| May be implied by e.g. $\frac{5}{12} \times \frac{3}{9}$ |
| $2^{\text {nd }} \mathrm{A} 1$ for $p=\frac{\frac{1}{8}}{\underline{\underline{8}}}$ or exact equivalent |
| If both correct values of p are found and then added (get $\frac{61}{360}$), deduct final A1 only (i.e. 4/5) |}

\hline
\end{tabular}

Q10.

Qu	Scheme										Marks	AO
(a)	c	0	1	2	3	4	5	6	7	8	B1	1.2
	$\mathrm{P}(C=c)$	$\frac{1}{9}$	B1ft	1.2								
(b)	$\mathrm{P}(C<4)=\frac{4}{9} \quad$ (accept 0.444 or better)										(2)	3.4
											(1)	
(c)	Probability lower than expected suggests model is not good										${ }_{\text {(1) }}^{\text {B1ft }}$	3.5a
(d)	e.g. Cloud cover will vary from month to month and place to place So e.g. use a non-uniform distribution										$\begin{aligned} & \text { B1 } \\ & \text { (1) } \end{aligned}$	3.5c
											(5 m	
	Notes											
(a)	$1^{\text {th }}$ B1 for a correct set of values for c. Allow $\left\{\frac{1}{8}, \frac{2}{8}, \ldots \frac{8}{8}\right\}$ $2^{\text {nd }}$ B1ft for correct probs from their values for c, consistent with discrete uniform distrib'n Maybe as a prob. function. Allow $\mathrm{P}(X=x)=\frac{1}{9}$ for $0 \leqslant x \leqslant 8$ provided $x=\{0,1,2, \ldots, 8\}$ is clearly defined somewhere.											
(b)	B1 for using correct model to get $\frac{4}{9}$ (o.e.)											
SC	Sample space $\{1, \ldots, 8\}$ If scored B0B1 in (a) for this allow $\mathrm{P}(C<4)=\frac{3}{8}$ to score $\mathrm{B1}$ in (b)											
(c)	B1 ft for comment that states that the model proposed is or is not a good one based on their model in part (a) and their probability in (b) \mid (b) $-0.315 \mid>0.05$ Allow e.g. "it is not suitable"; "it is not accurate" etc $\|(b)-0.315\| \leqslant 0.05$ Allow a comment that suggests it is suitable No prob in (b) Allow a comparison that mentions 50% or 0.5 and rejects the model No prob in (b) and no 50% or 0.5 or (b) >1 scores B0 Ignore any comments about location or weather patterns.											
(d)	B1 for a sensible refinement considering variations in month or location Just saying "not uniform" is B0 Context \& "non-uniform" Allow mention of different locations, months and non-uniform or use more locations to form a new distribution with probabilities based on frequencies Context \& "binomial" Allow mention of different locations, months and binomial Just refined model Model must be outlined and discrete and non-uniform e.g. higher probabilities for more cloud cover or lower probabilities for less cloud cove Continuous model Any model that is based on a continuous distribution. e.g. normal is B0											

Q11.

Part	Working or answer an examiner might expect to see	Mark	Notes
(a)	$\frac{523+52+28}{184}=\frac{132}{184}=0.717$	B1	This mark is given for a correct value for the probability for the cloud cover
(b)(i)	$\mathrm{P}(X \geq 6)=1-\mathrm{P}(X \leq 5)$	M1	This mark is given for using $1-\mathrm{P}(X \leq 5)$ with $B(8,0.76)$
	$\begin{aligned} & =1-0.2967 \\ & =0.703 \end{aligned}$	A1	This mark is given for finding as correct value for the probability
(b)(ii)	$\begin{aligned} & 184 \times \mathrm{P}(X=7) \\ & =184 \times 0.2811 \end{aligned}$	M1	This mark is given for using $184 \times \mathrm{P}(X=7)$ with $\mathrm{B}(8,0.76)$
	$=51.7$	A1	This mark is given for finding as correct value for the probability
(c)	The answer to part (b)(i) of 0.703 is similar to 0.7127 in part (a) The answer to part (b)(ii) of 51.7 is very close to 52 found in the data set	B1	This mark is given for a correct evaluation of the outcomes from part (b) to determine the appropriateness of Magali's model
(d)	$\frac{5+9+9}{28}=\frac{23}{28}=0.821$	B1	This mark is given for a correct value for the probability for the cloud cover
(e)	The answer to part (d) of 0.821 is greater than that in part (a) of 0.717 This shows that there is a higher chance of having high cloud cover if the previous day had high cloud cover	B1	This mark is given for a correct comparison for the answer to part (d) with the data set
	Thus independence does not hold so a binomial model might not be suitable	B1	This mark is given for a correct conclusion stated
(Total 9 marks)			

Q12.

	Scheme	Marks	AO
(a)	$\begin{gather*} \frac{k}{10}+\frac{k}{20}+\frac{k}{30}+\frac{k}{40}+\frac{k}{50}=1 \text { or } \frac{1}{600}(60 k+30 k+20 k+15 k+12 k)=1 \\ \text { So } k=\frac{600}{137} \tag{*} \end{gather*}$	M1 Alcso (2)	1.1 b 1.1 b
(b)	(Cases are:) $D_{1}=30, D_{2}=50$ and $D_{1}=50, D_{2}=30$ and $D_{1}=40, D_{2}=40$	M1	2.1
	$\begin{aligned} & \mathrm{P}\left(D_{1}+D_{2}=80\right)=\frac{k}{50} \times \frac{k}{30} \times 2+\left(\frac{k}{40}\right)^{2} \\ &=0.0375619 \ldots \text { awrt } \mathbf{0 . 0 3 7 6} \end{aligned}$	$\begin{array}{ll}\text { M1 } \\ \text { A1 } \\ \\ & \text { (3) }\end{array}$	3.4 1.1 b
(c)	Angles are: $a, \quad a+d, \quad a+2 d, \quad a+3 d$ $\mathrm{S}_{4}=a+(a+d)+(a+2 d)+(a+3 d)=360$ $2 a+3 d=180 \text { (o.e.) }$ Smallest angle is $a>50$ consider cases: $d=10$ so $a=75$ or $d=20$ so $a=60$ [$d=30$ gives $a=45$ no good] $\mathrm{P}(D=10 \text { or } 20)=\frac{3 k}{20}=\frac{90}{137}$	M1	3.1a
		M1	2.1
		A1	2.2a
		M1	3.1 b
		A1	1.1 b
		(5)	
		(10 marks)	

	Notes
(a)	$\begin{array}{ll} \hline \text { M1 } & \text { for clear use of sum of probabilities }=1 \text { (all terms seen) } \\ \text { A1 cso (*) } & \text { M1 scored and no incorrect working seen. } \end{array}$
Verify	(Assume $k=\frac{600}{137}$) to score the final A1 they must have a final comment " $\therefore k=\frac{600}{137}$ "
(b)	$1^{\text {st }}$ M1 for selecting at least 2 of the relevant cases (may be implied by their correct probs) e.g. allow 30,50 and 50,30 i.e. D_{1} and D_{2} labels not required $2^{\text {nd }}$ M1 for using the model to obtain a correct expression for two different probabilities. May use letter k or their value for k. Allow for $\frac{k}{50} \times \frac{k}{30}+\left(\frac{k}{40}\right)^{2}$ or $2 \times\left(\frac{k}{50} \times \frac{k}{30}+\left(\frac{k}{40}\right)^{2}\right)$
	A1 for awrt 0.0376 (exact fraction is $\frac{705}{18769}$)
(c)	$1^{\text {st }}$ M1 for recognising the 4 angles and finding expressions in terms of d and their a $2^{\text {nd }}$ M1 for using property of quad with these 4 angles (equation can be un-simplified) Allow these two marks for use of a (possible) value of d e.g. $a+a+10+a+20+a+30=360$ (If at least 3 cases seen allow A1 for e.g. $4 a=300$) or allow M1M1 for a set of 4 angles with sum 360 and possible value of d (3 cases for A1) e.g. (for $d=20) 60,80,100,120$ $1^{\text {st }} \mathrm{A} 1$ for $2 a+3 d=180$ condition (o.e.) [Must be in the form $p a+q d=N$] $3^{\text {rd }}$ M1 for examining cases and getting $d=10$ and $d=20$ only $2^{\text {nd }} \mathrm{A} 1$ for $\frac{90}{137}$ or exact equivalent The correct answer and no obviously incorrect working will score $5 / 5$ A final answer of awrt $0.657(0.65693 \ldots)$ with no obviously incorrect working scores $4 / 5$

Q13.

Q14.

