1. A random variable has the distribution B(n, p). It is required to test H_0 : $p = \frac{2}{3}$ against H_1 : $p < \frac{2}{3}$ at a significance level as close to 1% as possible, using a sample of size n = 8, 9 or 10. Use tables to find which value of *n* gives such a test, stating the critical region for the test and the corresponding significance level.

[4]

- 2. In a city the proportion of inhabitants from ethnic group Z is known to be 0.4. A sample of 12 employees of a large company in this city is obtained and it is found that 2 of them are from ethnic group Z. A test is carried out, at the 5% significance level, of whether the proportion of employees in this company from ethnic group Z is less than in the city as a whole.
 - i. State an assumption that must be made about the sample for a significance test to be valid.

[1]

[2]

[7]

- ii. Describe briefly an appropriate way of obtaining the sample.
- iii. Carry out the test.
- iv. A manager believes that the company discriminates against ethnic group Z. Explain whether carrying out the test at the 10% significance level would be more supportive or less supportive of the manager's belief.

[2]

3. i. State an advantage of using random numbers in selecting samples.

[1]

ii. It is known that in analysing the digits in large sets of financial records, the probability that the leading digit is 1 is 0.25. A random sample of 18 leading digits from a certain large set of financial records is obtained and it is found that 8 of the leading digits are 1s. Test, at the 5% significance level, whether the probability that the leading digit is 1 in this set of records is greater than 0.25.

[7]

- Hypothesis Tests for the Binomial Distribution
- 4. 55% of the pupils in a large school are girls. A member of the student council claims that the probability that a girl rather than a boy becomes Head Student is greater than 0.55. As evidence for his claim he says that 6 of the last 8 Head Students have been girls.
 - i. Use an exact binomial distribution to test the claim at the 10% significance level.

[7]

- ii. A statistics teacher says that considering only the last 8 Head Students may not be satisfactory. Explain what needs to be assumed about the data for the test to be valid.
 - [1]

[1]

- It is known that under the standard treatment for a certain disease, 9.7% of patients with the disease experience side effects within one year. In a trial of a new treatment, 450 patients with this disease were selected and the number, X, that experienced side effects within one year was noted.
 It was found that 51 of the 450 patients experienced side effects within one year.
 - (a) Test, at the 10% significance level, whether the proportion of patients experiencing side effects within [7] one year is greater under the new treatment than under the standard treatment.
 - (b) It was later discovered that all 450 patients selected for the trial were treated in the same hospital. Comment on the validity of the model used in part (a).
- 6. (a) André throws a fair six-sided dice 30 times. The number of throws on which the score is six is denoted by *X*.

(i) State a suitable model for X, including the values of any parameters.	[1]
(ii) Find $P(X = 9)$.	[1]
(ii) Find $P(X \ge 9)$.	[1]

André has another six-sided dice. He suspects that this dice is biased so that it is more(b) likely to show a six than if it were fair. He throws the dice 30 times and it shows a six on 9 throws. Test at the 5% significance level whether André's suspicion is justified. [6]

Hypothesis Tests for the Binomial Distribution

7. The acidity of paper is measured on the numerical pH scale. It is known that the writing paper generally used by a certain author has a mean pH of 6.3. The pH, X units, of a random sample of 36 pieces of paper thought to have been used by this author was measured, and the results are summarised as follows.

$$n = 36$$
 $\sum x = 222.48$ $\sum x^2 = 1380.5264$

- Test at the 5% significance level whether the pH of the paper from which this sample is drawn differs from 6.3.
- (ii) State where the Central Limit Theorem was used in your test in part (i). [1]
- 8. A random variable X has the distribution B(60, p). A hypothesis test is to be carried out, at the 5% significance level, of the null hypothesis H₀: p = 0.95 against the alternative hypothesis H₁: p > 0.95.
 - (i) Explain why a normal approximation cannot be used. [1]
 - (ii) Verify that the critical region for the test is X = 60. [4]

State the value(s) of p for which a Type I error could occur, and give the

- (iii) corresponding probability or probabilities of a Type I error.
- (iv) Find the range of values of p for which the probability that a Type II error occurs is less [4] than 0.6.
- 9. It is known that 20% of plants of a certain type suffer from a fungal disease, when grown under normal conditions. Some plants of this type are grown using a new method. A random sample of 250 of these plants is chosen, and it is found that 36 suffer from the disease. Test, at the 2% significance level, whether there is evidence that the new method reduces the proportion of plants which suffer from the disease.

10.

Briony suspects that a particular 6-sided dice is biased in favour of 2. She plans to throw the dice 35 times and note the number of times that it shows a 2. She will then carry out a test at the 4% significance level. Find the rejection region for the test.

[2]

[7]

[7]

[7]

11. Research has shown that drug A is effective in 32% of patients with a certain disease.

In a trial, drug B is given to a random sample of 1000 patients with the disease, and it is found that the drug is effective in 290 of these patients.

Test at the 2.5% significance level whether there is evidence that drug B is effective in a lower proportion of patients than drug A.

END OF QUESTION paper

Mark scheme

	Questio	'n	Answer/Indicative content	Marks	Marks Part marks and guidance	
1			<i>n</i> = 9	B1	Stated explicitly	
			CR is ≤ 2	M1A1	2 seen but not ≤: M1A0. Allow "P(≤ 2)"	CR must be stated explicitly for A1
			0.0083	A1	Or more SF. " $n = 9$, CR \ge 3", 0.0083 seen: B1M1A0A1 Examiner's Comments Most knew what to do, though many lost marks by failure to spell out the answers for the critical region and the significance level. Some wrongly attempted a right-hand tail.	SR: ≤ 3 with 0.0424: (B1)M1A0 SR: If 0, give B1 for at least 3 of 0.0083, 0.0113, 0.0026, 0.0197, 0.0034 seen
			Total	4		
2		i	Sample is random	B1	Indicate random sample. Allow "unbiased sample" or "randomly selected" or "all equally likely". Allow "representative" provided it's clearly "of company" (not city) Not just "independent". Withhold if extra wrong bits. Examiner's Comments Most realised that the sample had to be a random one. Those who used the word "representative" sometimes indicated, wrongly, that it had to be representative of the city rather than of the company. Some even negated the point of the test by stating that the proportion from group Z had to be the same in the company as in the city.	
		ii	List population, number sequentially	B1	List can be implied; must imply employees or people. "Sequential" can be assumed.	
		ii	Select using random numbers	B1	Not "select numbers randomly", Don't need "ignore outside range" etc. Number randomly <i>and</i> select randomly, B1, but "assign random nos &	

			arrange", B2 SC: Put names into hat / lottery machine and take them out: B2 SC: Systematic: B1 for list, can get second B1 if starting-point random Examiner's Comments Many candidates do not appreciate the difference between "select numbers randomly" and "select using random numbers". The word "randomly" in the former context is not specific and gives no indication of how the selection is to be done, whereas "random numbers" represents a specific mathematical concept, knowledge of which is required by the specification.	lypothesis Tests for the Binomial Distribution
iii	H ₀ : $p = 0.4$; H ₁ : $p < 0.4$	B2	Both correct, B2. Allow π . One error, e.g, μ or no symbol, B1, but \overline{X} , z etc: B0.	
iii	B(12, 0.4)	M1	B(12, 0.4) stated or implied. Can be implied by N(4.8, 2.88) but no further marks. 0.1673, 0.0398, 0.1513, 0.0421: M1A0(A1M1A1)	
iii	P(≤ 2) = 0.0834	A1	$P(\le 2) = 0.0834$, or $P(\ge 2) = 0.9166$.	
iii	> 0.05	A1	Compare numerical P(\leq 2) with 0.05, or P(> 2) with 0.95	
iii	CR is ≤ 1	A1	CR is ≤ 1 stated.	
iii	0.0196 seen and compare 2 with ≤ 1	A1	Explicitly compare 2 with CR, probability 0.0196 must be seen	
iii	Do not reject H ₀ .	M1	Correct first conclusion, needs P(\leq 2 ρ = 0.4) or fully consistent equivalent	
	Insufficient evidence that proportion of employees from group Z is less.	A1ft	In context (mention "employees", "city" etc), acknowledge uncertainty ("evidence") <i>Not</i> "there is evidence that the proportion of employees is 0.4" FT on wrong <i>p</i> -value or wrong critical value if previous mark gained SC: Normal: B2 M1 max SC: P(= 2) or P(\geq 2) or P(< 2): B2 M1 max SC: two-tailed: can get B1B0 M1A1A0 M1A1 (don't give second A1 for 0.05)	

				Ну;	othesis Tests for the Binomial Distribution
				Examiner's Comments	
				This question was often well done, perhaps because finding the relevant probability for a left-hand tail is easier than for a right-hand tail. Few made the error of finding P(< 2) or P(= 2) as opposed to the correct P(\leq 2). Those who used the critical region method generally did so correctly but this method always needs validation by displaying the relevant probability (here 0.0196). Too many stated the acceptance of H ₀ meant that there is significant evidence that the proportion from group Z is 40%. This is wrong. The correct statement is that there is not sufficient evidence that the proportion from group Z is less than 40%.	
	iv	Yes as H ₀ is rejected	M1	Realise this changes conclusion (FT!), or "more likely to reject H0", "larger CR"	
				More supportive [just "more supportive" without evidence is M0A0]	
				Examiner's Comments	
	iv		A1	This question could be successfully answered either in hypothetical terms ("it is more likely that the null hypothesis is rejected") or in terms	
				of the actual sample ("the null hypothesis is now rejected"). Some	
				thought that the issue was whether causality could be proved – but once again that is answering last year's question and not this one.	
		Total	12		
				– unbiased (allow "fair")	
		Avoids (reduces) bias,		- representative (allow "reliable")	<i>Not:</i> – all equally likely to be selected
		or "representative"			- selections independent
3	i	or "allows calculations to be done"	B1	- allows use of distribution	– quick / easy / cheap
		or "allows reliable estimates"		Both right and wrong: B1	– random sample
				Examiner's Comments	

				Ну	pothesis Tests for the Binomial Distribution
				This unfamiliar request was in fact answered well. About half the	
				candidates wrote that it avoids (or reduces) bias, or that it ensures a	
				representative sample (this latter statement is not really true but it was	
				given credit). Sophisticated answers seen included 'use of random	
				numbers allows distributions such as the binomial to be used'.	
	ii	B(18, 0.25)	M1	B(18, 0.25) stated or used	
	ii	H ₀ : <i>p</i> = 0.25, H ₁ : <i>p</i> > 0.25	B2	One error, B1; x or \overline{X} B0; π : B2	Any symbol can get B2 if explicitly defined
	ii	a: P(≥ 8) = 1 − P(≤ 7) = 0.0569	A1	0.0569 seen	Allow 0.9431 only if "> 0.95" and vice versa.
	ii	> 0.05	A1	Explicit comparison with 0.05	"> 8" (0.0193), "≤ 8" (0.9807) or "= 8" (.0376): max M1B2 [A0A0M0A0], 3/7
	ii	β: CR is ≥ 9, and 8 < 9	A1dep*	Correct CR and explicit comparison	
				0.0193 explicitly seen	
	ii	probability 0.0193	*A1	If more than one probability seen, assume method is $\boldsymbol{\beta}.$ Note that this	
				requires explicit comparison for either A1; but can get final M1A1	
	ii	Do not reject H ₀ .	M1	Correct first conclusion, e.g. "reject H1"	M1 needs correct method, comparison, like-
				Interpreted, in context, consistent with p , acknowledge uncertainty. FT	with-like, ≥ 8 (or ≤ 7 but only if used consistently)
	ii	Insufficient evidence that proportion of 1's is greater than 25%.	A1ft	on wrong CR/p	
				<i>Not:</i> "significant evidence that proportion of 1s is 25%"	Allow "change" instead of "increase" SR: 2-tail, max M1B1B0A1A0M1A1
				Examiner's Comments	
				This was a standard binomial hypothesis test and many scored full	
				marks, although some poor conclusions were seen. As usual, weaker	
	ii			candidates using the probability method attempted to use $P(> 8)$ or $P(=$	
				8) as opposed to the correct $P(\ge 8)$. It is not, however, sufficient to write down two probabilities, tell us that one is > 0.05 and one is < 0.05, and	
				down two probabilities, tell us that one is > 0.05 and one is < 0.05, and then say 'do not reject H_0 '; it is not clear whether this is using the critical	
				value method or the probability method. Using the probability method,	

				only one probability can be given; using the critical region, an explicit statement and comparison such as CR is \geq 9, and 8 < 9 is essential.
				The final conclusion was usually well stated, though it is incorrect to say
				that 'there is evidence that the proportion of 1's <i>is</i> 25%'. A double
				negative is required: 'there is insufficient evidence that the proportion of 1's is not 25%'.
		Total	8	
4	i	H ₀ : <i>p</i> = 0.55, H ₁ : <i>p</i> > 0.55	B2	All correct, B2. One error (e.g. \neq , wrong or no letter) B1, but r, x etc: B0
	i	R ~ B(8, 0.55) where R is the number of girls	M1	B(8, 0.55) stated or implied, e.g. N(4.4, 1.98)
	i	a: $P(R \ge 6) = 1 - 0.7799 = 0.2201$	A1	P(≥ 6) = 0.2201, or P(< 6) = 0.7799
	i	> 0.1	B1	Compare $P(\ge 6)$ with 0.1 or $P(< 6)$ with 0.9
	i	β : CR is \geqslant 7 and 6 < 7	B1	Correct CR stated and explicit comparison with 6
	i	<i>p</i> = 0.0632	A1	This probability seen, a.r.t. 0.0632. Award if 0.9368 seen and CR is correct. If CR not clearly stated, cannot get last M1A1
	i	Do not reject H ₀ . There is insufficient evidence that the girls are proportionately more likely to become	M1	Correct first conclusion, requires B(8, 0.55), not P(> 6) [= 0.0632] or P(\leq 6) [= 0.9368] or P(= 6) [= 0.1569]. Allow 0.7799 if compared with 0.9
				Interpreted, in context, acknowledge uncertainty, double negative. SC: Normal: max B2 M1 SC: Two different attempts: max B2 M1 unless both correct
	i	Head Student.	A1	Examiner's Comments
				A standard hypothesis test for a binomial parameter. The proportion of
				candidates who considered the wrong tail, or no tail at all, seemed
				lower than in the past, which is pleasing. To make the point clearly: with
				a sample value of 6 (and an expected value of 4.4) the probability that

				has to be found is $P(\ge 6)$, and not $P(\ge 6)$ or although not wrong, should be discouraged probabilities is not in the spirit of hypothesis used the critical value method did not make critical region was. "Critical value is 7" is not "critical region is ≥ 7 ", and then "6 is not in be clearly stated. Candidates who did not s unambiguously risked losing the last two mat $p = 0.2201 \ge 0.1$, do not reject.	, as comparison with large testing. Often those who it clear what the actual enough; it has to be the CR", or " $6 < 7$ " has to tate the critical region	othesis Tests for the Binomial Distribution
	ï	Assume that the last 8 years are a random sample of years when Head Student has been chosen	B1	Refer to random sample, allow implied by a Must be choosing <i>years</i> , not <i>students</i> Not of sample unless explicitly "years" Extras: ignore unless clearly wrong, in which Examiner's Comments This verbal question revealed a lot of muddl whether the Head Students from the last 8 representative of all Head Students from the and so the focus has to be on selecting the instead attempted to apply standard binom which the Head Student was chosen (electer Student must be chosen independently of t	uote conditions for random n case B0 ed thinking. The issue is years can be taken as a e period under discussion, <i>years.</i> Many candidates al conditions to the way in ed?) each year ("each Head	
		Total	8			
5	а	$H_0: p = 0.097$ $H_1: p > 0.097$ where p is the proportion of patients experiencing side effects within a year $X \sim B(450, 0.097)$ and $X = 50$	B1 (A01.1) B1 (A02.5) M1 (A03.3)	Must be stated in terms of parameters Undefined <i>p</i> B1B0		
5	a	$P(X \ge 51) = 1 - 0.862 = 0.138(3 \text{ s.f.})$	A1 (AO3.4) A1 (AO1.1) M1 (AO1.1) A1 (AO2.2b)	Stated or implied	Only 0.138 seen without parameters/	

			Comparison with 0.1 Do not reject H ₀ No evidence (at 10% level) that proportion under new treatment greater than under standard treatment	[7]	BC	Hy distribution M1AO	pothesis Tests for the Binomial Distribution
					In context, not definite, e.g. Proportion not greater A0	FT their 0.138, but not comparison with 0.1	
	1	b	E.g. The patients could be treated together so they are not independent, so the binomial model is not valid. E.g. The 450 patients are not a random sample from the population, so the binomial model is not valid. E.g. It is not known whether the proportion of patients experiencing side effects under the standard treatment is 9.7%, so the binomial model used may not be valid.	B1 (AO3.5a) [1]	In context, referring to independence or random sampling. Must include a comment on appropriateness.		
			Total	8			
6	į	а	$B(30, \frac{1}{6})$	B1(AO3.3) [1]			
	4	а	ii) 0.0309	B1(AO1.1) [1]	BC		

	а	iii) $1 - P(X \le 8)$ = 0.0506	M1(AO3.4) A1(AO1.1) [2]		Ну	pothesis Tests for the Binomial Distribution
	Ь	H _o : $p = \frac{1}{6}$ where $p = P(\text{score is 6})$ H ₁ : $p > \frac{1}{6}$ $P(X \ge 9) = '0.0506' \text{ or their (a)(ii)}$ comp 0.05 Not reject H ₀ No evidence that dice biased towards 6	B1(AO1.1) B1(AO2.5) B1(AO3.4) A1(AO1.1) M1(AO2.2b) A1f(AO3.5a) [6]	Undefined <i>p</i> : B0B1 BC ft their (a)(ii) ft their (a)(ii) In context, not definite	dice is unbiased B0 dice is biased towards 6 B1	
		Total	10			
7	i	$\hat{\mu} = \overline{x} = 6.18$ $\hat{\sigma}^2 = \frac{36}{35} \left(\frac{1380.5264}{36} - 6.18^2 \right)$ $= 0.16$ Ho: $\mu = 6.3$, Hi: $\mu \neq 6.3$	B1 M1 M1 A1 B2 M1	 6.18 seen somewhere Correct formula for biased estimate Multiply by 36/(36 – 1) 0.1556: M1M0A0. Allow e.g. 5.6/35 One error, B1, but 	Single formula: M2 if right, M1 if wrong but with 35 divisor <i>somewhere</i>	

$\alpha: z = 6.18 - 6.3 = -1.8, p = 0.0359$		_	Hypothesis Tests for the Binomial Distribution
$\frac{2}{\sqrt{0.16/36}} = -1.8, p = 0.0559$		<i>x</i> , <i>x</i> , <i>t</i> : B0	
¥0.10750		Standardise, 36	$H_0: \lambda = 6.3, H_1:$
	A1	needed (if omitted, no more marks in (i)	$\lambda \neq 6.3$: B1
		1.8 or –1.8 or a.r.t.	(urother then (
	A1	0.0359	u rather than μ . B1B0 if
			unquestionably <i>u</i> ,
-1.8 > -1.96 or 0.0359 > 0.025		Compare $-z$ with -1.96 or z with	else BOD
		1.96 or <i>p</i> with	Allow 0.9641 <i>only</i> if compared with
		0.025, like-with-like	0.95 or 0.975
			Wrong or no
	M1		notation (e.g. "cdfnorm"): full
β : CV 6.3-1.96 $\sqrt{\frac{0.16}{36}} = 6.1693$		6.3 – <i>z</i> √(<i>o</i> ²/36),	marks if right,
V 36	A1	allow √ errors,	MOAOAO (M1A1) if
		cc, ± z=1.96	numbers wrong in
	A1	2 - 1.00	any way
	1	_	$6.18 + z/(\sigma^2/36)$:
6.18 > 6.1693		Compare \overline{x} with	M1 and no further
	M1	6.17 (or with 6.19 from 1-tail)	marks in (i)
			6.17 (and no working) can imply
		Requires essentially	mark for 1.96
Do not reject H ₀ .		correct method, 36	SC 1-tail: 6.18 >
		divisor, like-with-	6.19, reject H ₀ , etc:
	A1ft 11	like, hypotheses involving 6.3	M1A0A1, M1A1
		Contextualised,	
Insufficient evidence that pH of paper is not 6.3		acknowledge	
		uncertainty.	
		Allow "insufficient	

				evidence that pH hasn't changed"	Hy Withhold A1 if no context or too assertive, e.g. "evidence that pH of paper is 6.3"	pothesis Tests for the Binomial Distribution
				Examiner's Comments A standard normal hypothesis test q included: not finding an unbiased va factor of √36 in standardising. Wrong As usual with tests where the outcor conclusion needed to be stated as a "there is insufficient evidence that the say "there is significant evidence that	riance estimate, or the omission of a g hypotheses were rarer this year. ne is not to reject H ₀ , the final double negative, for example e mean pH is not 6.3"; it is wrong to	
	ï	In comparing <i>z</i> with <i>z</i> _{crit}	B1 1	Or in using 1.96 for CV, etc, or "in assuming that the sample (mean) is normally distributed" (must answer "where?", mustn't leave it vague as to whether it's X or \overline{X})	No extra answers. "Calculating variance" or "dividing by √n" : B0. Not "because the population is not known to be normally distributed". But allow if OK <i>and also</i> explained why it can be used.	

				Examiner's Comments	Hypothesis Tests for the Binomial Distribution
				This question was poorly answered. For a start, many candidates did answer this question but their own variation of the question; the question did <i>not</i> ask "do you need to use the CLT?", or "can you use the CLT?" but "where is the CLT used?" Answers such as "Yes beca we are not told the parent distribution" were disappointingly common	Jse
			The central limit theorem appeared to be a widely misunderstood topic. It is <i>not</i> a statement about dividing the variance by <i>n</i> ; that result is true for any distribution. Many candidates seem to believe that the CLT turns any distribution into an approximately normal one; "we are not told that the distribution is normal but the CLT allows us to assume that it is" was a common wrong response. It is important for candidates to realise that the CLT refers to <i>two different</i> distributions: the "parent" distribution, and the distribution of the sample mean (not "the sample", either). The statement is: "regardless of the parent distribution, the distribution of the sample mean is approximately normal for a large enough sample". The key words are "sample mean". A correct answer would, therefore, have been, "in assuming that the sample mean is approximately normally		e ns at vas
		Total	12	distributed".	
8	i	nq = 3 < 5, or <i>p</i> not close to ½ and <i>n</i> not large enough	B1 1	www. 3 and 5 mustWithhold if extrawww. 3 and 5 mustwrong statementsbe seen if inequalityseen but ignoreused (No need toirrelevantmention Poisson –statements (e.g.ignore any mention) $npq = 2.85$	
				Examiner's Comments	

			It was necessary to focus on nq and quote its value as 3, which is less Hyperbolic than 5 (or to make an equivalent statement about both n and p : " p_{\Box} not close to 1/2" is not enough as it depends also in the value of n). The wrong condition $npq < 5$ was quite often used and this did not score the mark.		pothesis Tests for the Binomial Distribution
ï	$P(X = 60) = 0.95^{60} = 0.046$ $(< 0.05$ $P(X \ge 59) = 0.046 + 0.1455 [= 0.19155]$ > 0.05	B1dep* dep*B1 B1dep† dep†B1 4	In range [0.0460, 0.0461], <i>or</i> [0.9539, 0.954] Correct tail explicitly compared In range [0.191, 0.192], <i>or</i> [0.808, 0.809] Correct tail explicitly compared (no final conclusion needed) Examiner's Comments Solutions to this question were often find P(= 60) and state that this was le necessary to show that is P(\geq 59) is Poisson distribution in this and subse possible, though unnecessary.	ess than 0.05, but it was also greater than 0.05. Use of the	

						pothesis Tests for the Binomial Distribution
				Question requires this to be stated FT on their 0.046 from (ii)	<i>NOT</i> 0.05. NB: if Po(3) used in (ii), 0.0498 gets B1	
i	iii	ρ = 0.95	B1			
		0.046	B1ft 2	Examiner's Comments		
				This was found surprisingly hard. Fe Type I error the value of ρ -had to ea such as $p < 0.95$ or $p > 0.95$ were of as $X = 60$. Candidates seemed to b p represented. A more understanda probability of a Type I error was 0.08	qual 0.95 and nothing else. Answers common, but so were answers such e confused about what ble common wrong answer to the	
				Can be implied	$p^{60} > 0.6 \text{ or}$ $p^{60} < 0.6: \text{ can get}$ M1 if P(≤ 59) < 0.6	
		P(≤ 59) < 0.6	M1		stated explicitly, otherwise 0 SC: T&I or tables: <i>p</i>	
i	iv	$1 - p^{60} < 0.6$	A1		> 0.985 or better, B4, else 0	
		$p^{60} > 0.4$	A1		Allow <i>p</i> > 0.958	
		0.985 < <i>p</i> ≤ 1	A1 4	Range required, allow any combination of ≤<br Withhold if more than 5 sf seen	SC: $60 - R \sim Po(\lambda)$: $1 - P(\le 0) <$ 0.6 $e^{-\lambda} > 0.4$ $(\lambda < 0.916)$	

			Examiner's Comments There was a clear-cut division betwee answer this question confidently and struggled to make any progress. Som distribution, and a common wrong so 0.6 instead of 0.4.	$\begin{array}{c c} 60(1-p) < & M1, \\ needs \\ M1A1 \\ \hline p > 0.985 & A1 \end{array}$	othesis Tests for the Binomial Distribution
	Total	11			
9	Ho: p = 0.2 where p = P(A plant gets disease) H1: $p < 0.2$ (not $p \le 0.2$) X ~ B(250, 0.2) and X = 36 (allow 35) P(X ≤ 36) = 0.0139 or 0.014 0.0139 < 0.02	B1 (AO1.1) B1 (AO2.5) M1 (AO3.3) A1 (AO3.4) A1f (AO1.1)	Allow "possibility" or "proportion". Not $p = \%$ age having disease Undefined p : B1B0 Stated or implied eg by 0.0139 (or 0.00884) cao BC NB dep attempt P(X \leq 36) ft their P(X \leq 36) (< 0.02)	If 2-tail test: H _o : $p = 0.2$ (defined p) B1 H ₁ : $p \neq 0.2$ B0 M1 A1 0.0139 > 0.01 A1 No more marks	

	(AO2.2b)	Hypothesis Tests for the Binomial Distribution Must see this
		statement
		NB dep attempt P(X
		≤ 36) or P(X < 36)
		and dep comp
	A1f	0.02, ft their $P(X \le 1)$
There is evidence that new method reduces prop of diseased	(AO3.5a)	36), possibly not
	(ACO.04)	reject H_0
plants		
		In context, not
		definite
		ft only their $P(X \le C)$
		36) or P(X < 36)
		possibly "no
		evidence"
	[7]	Ignore all else
		P(X < 36): max
		B1B1M1A0A0M1A1
		Examiner's Comments
		Many candidates had clearly been well prepared for a hypothesis test
		question. However, even these often made errors. Examples of such
		errors were as follows.
		• Failure to define "p" in the hypotheses
		• H1: $p \neq 0.02$
		• Finding P(X < 36) instead of P(X \leq 36)
		• Finding $P(X \le 36)$ instead of $P(X \le 36)$ • Finding $P(X = 36)$ instead of $P(X \le 36)$
		• Writing $P(X \le 0.2)$ instead of $P(X \le 36)$
		Comparing the probability with 0.2 instead of 0.02 Ormitting to state "Reject LIO" in the conclusion
		Omitting to state "Reject H0" in the conclusion

			method reduces the prop	on such as "Reject Ho. The new portion" 139 < 0.02, we do not reject H ₀	ypothesis Tests for the Binomial Distribution
	Total	7			
10	$H_{0}: p = \frac{1}{6}$ $H_{0}: p > \frac{1}{6} \text{ where } p = P(2 \text{ on one throw})$ $B_{(35, \frac{1}{6})}$ $P(X \ge 10) = 1 - P(X \le 9) \text{ or } P(X \ge 11) = 1 - P(X \le 10) \text{ p}(X \ge 10) = 0.055$ $P(X \ge 11) = 0.023 \text{ (0.04 lies between these hence)}$ $rejection region is X \ge 11 Allow \text{ eg } a \ge 11$ $Special case, using N-Bin; Method A$ $H_{0}: \mu = \frac{35}{6}$ $H_{0}: \mu > \frac{35}{6} \text{ where } \mu = \text{pop mean no. of } 2's$	B1 (AO 1.1) B1 (AO 2.5) M1 (AO 3.3) M1 (AO 1.1a) A1 (AO 2.1) A1 (AO 2.1) A1 (AO 3.4) A1 (AO 2.2a) B1 (AO 1.1) B1 (AO 2.5)	 B1B0 one error eg undefined <i>p</i> or two-tail stated or implied unless clearly using N() ≥ 1 of these probabilities stated BC BC dep ≥ one of above probs seen & correct 	or $P(X \le 9)$, $P(X \le 10)$ $P(X \le 9) = 0.945$ $P(X \le 10) = 0.977$ (0.96 between these) rej'n region is $X \ge 11$	

				H	pothesis Tests for the Binomial Distribution
	25 175	M1			
	$\frac{35}{N(6)} \frac{175}{36}$ or N(5.833, 4.861) soi	(AO 3.3)	B1B0 one error eg		
	N(6 , 36) or N(5.833, 4.861) soi	(AC 3.3)	undefined μ or two-		
		M1	tail		
		(AO 1.1a)			
	$P(X \ge 10) = 1 - P(X < 9.5)$	vie may	Allow incorrect		
	or $P(X \ge 11) = 1 - P(X < 10.5)$	AO	variance		
	$P(X \ge 10) = 0.048$	(AO 2.1)			
	$P(x \ge 10) = 0.046$	A1	\geq 1 of these	P(X < 9.5)	
	$P(X \ge 11) = 0.017$	(AO 3.4)	probabilities	or P(X < 10.5)	
			attempted		
	(0.04 lies between these hence)		BC	P(X < 9.5) = 0.952	
		A1		1 (7 < 0.0) = 0.002	
	rejection region is $X \ge 11$	(AO 2.2a)	BC	P(X < 10.5) = 0.983	
				(0.96 between	
				these)	
	Special case, using N~Bin; Method B			rej'n region is $X \ge$	
	25	B1	dep \geq one of above	11	
	$H_0: \mu = \frac{35}{6}$	(AO 1.1)	probs seen &		
	° ′ 6	54	correct		
		B1 (AO 2.5)	CONCOL		
	25	(AU 2.5)			
	H ₀ : $\mu > \frac{35}{6}$ where $\mu = \text{pop mean no. of}$				
	6 2's	M1			
		(AO 3.3)			
	$\frac{35}{N(6)} \frac{175}{36}$ or N(5.833, 4.861) soi	M1	D1D0 one error og		
	N(6 , 36) or N(5.833, 4.861) soi	(AO 1.1a)	B1B0 one error eg		
		A1	undefined μ or two-		
	P(X < a) = 0.04 soi	(AO 2.1)	tail		
			Allow incorrect		
	$\frac{35}{6} + 1.751 \times \sqrt{\frac{175}{36}}$	AO	Allow incorrect		
	$\frac{6}{\sqrt{36}}$	(AO 3.4)	variance		
		A1	$Z = \Phi^{-1}(0.96) (=$		
	= 9.69 or 9.7	(AO 2.2a)	1.751		
			dep Φ ⁻¹ (0.96)		
1					

		rejection region is $X \ge 11$	[7]	attempt. May be implied BC	Hypothesis Tests for the Binomial Distribution
				Examiner's Comments	
				This question was well answered by was the omission of a definition of p marks candidates had to use an exact distribution. This involved finding P(X method. Many candidates stated that P(X < 10) but their result was actually this is due to insufficient familiarity will on the calculator). Some candidates	in the hypotheses. To gain full ct method, using the binomial $X \ge 10$ and $P(X \ge 9)$ or a similar it they were finding, for example, Y the value for $P(X \ge 10)$. (Perhaps th the use of the binomial function found only one of $P(X \ge 10)$ and $P(X)$
				\geq 9). These lost a mark. Some gave of gave an incorrect final answer of $X \geq$ Some candidates misread the question out a test.	10 instead of $X \ge 11$.
				Some candidates used the normal at distribution. (These were able to gain seven). Many of these candidates are gave an answer of $X \ge 10$.	a maximum of six marks out of the
		Total	7		
11		H ₀ : $\rho = 0.32$ where $\rho = P(\text{drug B is effective})$ H ₁ : $\rho < 0.32$ $X \sim B(1000, 0.32) \text{ and } X = 290$	B1 (AO 1.1) B1 (AO 2.5) M1 (AO 3.3) A1 (AO 3.4) A1 (AO 1.1) M1 (AO 1.1) A1FT (AO	B1 for one error, eg undefined <i>p</i> , or ≠ soi	

	Total	7	definite. Full statement		
	There is evidence that drug B is effective in a lower prop of patients than drug A		In context. Not		
	Reject H ₀				
	Comp 0.025	[1]			
	$P(X \le 290) = 0.0221$	2.2b) [7]	BC	Hy	othesis Tests for the Binomial Distribution