Numerical Measures Questions

3 When an alarm is raised at a market town's fire station, the fire engine cannot leave until at least five fire-fighters arrive at the station. The call-out time, X minutes, is the time between an alarm being raised and the fire engine leaving the station.

The value of X was recorded on a random sample of 50 occasions. The results are summarised below, where \bar{x} denotes the sample mean.

$$\sum x = 286.5 \qquad \sum (x - \overline{x})^2 = 45.16$$

- (a) Find values for the mean and standard deviation of this sample of 50 call-out times.

 (2 marks)
- (b) Hence construct a 99% confidence interval for the mean call-out time. (4 marks)
- (c) The fire and rescue service claims that the station's mean call-out time is less than 5 minutes, whereas a parish councillor suggests that it is more than $6\frac{1}{2}$ minutes.

Comment on each of these claims.	(2 marks)

4 The time, x seconds, spent by each of a random sample of 100 customers at an automatic teller machine (ATM) is recorded. The times are summarised in the table.

Time (seconds)	Number of customers
20 < x ≤ 30	2
30 < <i>x</i> ≤ 40	7
$40 < x \leqslant 60$	18
$60 < x \leqslant 80$	27
$80 < x \leqslant 100$	23
$100 < x \leqslant 120$	13
$120 < x \le 150$	7
$150 < x \le 180$	3
Total	100

(a)	Calculate estimates	for the mean a	and standard	deviation of	the time spent	at the ATM
	by a customer.					(4 marks)

(b)	pro	Kirk attends darts coaching sessions for three months. He then claims that he has a probability of 0.4 of winning any game, and that the outcome of each game is independent of the outcome of every other game.														
	(i)	(i) Assuming this claim to be true, calculate the mean and standard deviation for the number of games won by Kirk in a match of 15 games. (3 mark)											tion for the (3 marks)			
	(ii) To assess Kirk's claim, Les keeps a record of the number of games won by in a series of 10 matches, each of 15 games, with the following results:									•						
			8	5	6	3	9)	12	4		2	6	5		
		Ca	alculate	the m	ean a	nd st	tanda	ırd d	eviat	ion o	of the	ese v	alues			(2 marks)
	(iii)) Н	ence co	omment	on t	he va	alidit	y of	Kirk	's cl	aim.					(3 marks)
				17 41		22 43							39 58			
	(a)	Calc	ulate th	ne mean	and	the s	tanda	ard d	eviat	ion o	f the	se tir	nes.			(3 marks)
	(b) In fact, 23 people solved the puzzle. However, 3 of them failed to solve it within the allotted time of 60 seconds.								within the							
		Calc	ulate th	ne medi	an ar	d the	inte	rqua	rtile 1	ange	of t	he tir	nes ta	iken b	y all 2	3 people. (4 marks)
	(c)	For	the tim	es taker	ı by	all 23	peo	ple, e	expla	in wl	ny:					
		(i)	the m	ode is 1	not a	n app	ropri	ate n	ume	rical	meas	sure;				
		(ii)	the ra	nge is 1	not a	n app	ropri	ate n	ume	rical	meas	sure.				(2 marks)
	_															

4 A library allows each member to have up to 15 books on loan at any one time.

The table shows the numbers of books currently on loan to a random sample of 95 members of the library.

Number of books on loan	0	1	2	3	4	5–9	10-14	15
Number of members	4	13	24	17	15	11	5	6

- (a) For these data:
 - (i) state values for the mode and range; (2 marks)
 - (ii) determine values for the median and interquartile range; (4 marks)
 - (iii) calculate estimates of the mean and standard deviation. (4 marks)
- (b) Making reference to your answers to part (a), give a reason for preferring:
 - (i) the median and interquartile range to the mean and standard deviation for summarising the given data; (1 mark)
 - (ii) the mean and standard deviation to the mode and range for summarising the given data. (1 mark)

Numerical Measures Answers

3(a)	$Mean = \frac{286.5}{50} = 5.73$	B1		CAO
	Standard deviation = $\sqrt{\frac{45.16}{49 \text{ or } 50}}$ =			
	0.95 to 0.961	B1	2	AWFW
(b)	$99\% \Rightarrow z = 2.57 \text{ to } 2.58$	B1		AWFW 2.5758
	CI for μ is $\overline{x} \pm z \times \frac{(\sigma \text{ or } s)}{\sqrt{n}}$	M1		Use of Must have $(\div \sqrt{n})$ with $n \ge 1$
	Thus $5.73 \pm 2.5758 \times \frac{(0.95 \text{ to } 0.961)}{\sqrt{50}}$	A1√		$\sqrt{\ }$ on z and $s^2 > 0$ but not on \overline{x} Accept only 50 or 49 for n
	$5.73 \pm (0.34 \text{ to } 0.36)$	↑		Dependent
	5.37 to 5.39, 6.07 to 6.09)	A1	4	AWFW
(c)	CI excludes both values of 5 and 6½ so Neither claim appears valid	B1√ ↑ B1√		√ on (b); OE Dependent √ on (b); OE
	or			
	CI excludes 5 so claim not valid and	(B1√)		√ on (b); OE
	CI excludes 6½ so claim not valid	(B1√)	2	√ on (b); OE
	Total		8	

4(a)
$$z fx = 8025$$

 $z fx^2 = 739975$
Mean $(\overline{x}) = 80.2$ to 80.3 B2 AWFW 80.25
Standard Deviation $(s_n, s_{n-1}) = 30.9$ to 31.2 B2 AWFW 30.97882 or 31.13489 MPs (x) : $25, 35, 50, 70, 90, 110, 135, 165$ (B1) At least 4 correct

Mean $(\overline{x}) = \frac{z fx}{100}$ (M1) 4 Use of

(b)(t)	1504.6	B1	ĺ	CAO
(b)(i)	Mean, $\mu = np = 15 \times 0.4 = 6$	M1		
	Variance, $\sigma^2 = np(1-p) = 6 \times 0.6 = 3.6$	IVII		use of $\sigma^2 = np(1-p)$
	Standard deviation = $\sqrt{3.6}$ = 1.89 to 1.9	A1	3	AWFW; or equivalent
(ii)	Mean, $\overline{x} = 6$	B1		CAO $(\Sigma x = 60)$
		D1	2	CSO if evidence of $np(1-p)$ or 1.9
	Standard deviation, s or $\sigma = 2.82$ to 2.99	B1	2	AWFW; or equivalent. $(\Sigma x^2 = 440)$
(iii)	Means are same/equal	B1√		\checkmark on 2 means; accept $\frac{6}{15} = 0.4$ if not
	Standard deviations are different	B1 dep		contradicted by \overline{x} in (ii) dependent on 2 correct SDs
	Reason to doubt validity of Kirk's claim	B1 dep	3	dependent on 2 correct SDs
	•			•
1(a)	Mean $(\bar{x}) = 39.3 \text{ to } 39.4$	B1		AWFW (39.35)
	Standard Deviation (s. s.)			
	Standard Deviation (s_n, s_{n-1}) = 12.3 to 12.7	B 2	3	AWFW (12.358 or 12.679)
	If neither correct but working shown, then			$\sum x = 787 \sum x^2 = 34023$
		··		
	$Mean\left(\overline{x}\right) = \frac{\sum x}{20}$	(M1)		Used
(b)	Modion - 42	D2		CAO
(b)	Median = 42	B 2		CAO
	Median = 41.5 or 39 or 40	(B1)		CAO
	Interquartile Range = $55 - 31 = 24$	B2	4	CAO; allow B1 for identification of 31
	interqualitie range 33 31 2.	22	·	and 55; B0 if method shown is incorrect
	Interquartile Range = 21 to 27	(B1)		AWFW
	merquarme Range – 21 to 27	(B1)		AWIW
(c)(i)	Mode: eg			
	Does not exist If exists, must be > 60 or 58			
	All / too many different values	B1		OE
	Sparse data			
(225	Parray as			
(ii)	Range: eg Maximum value is unknown / > 60 or 58	B1	2	OE; accept 'slowest' but not 'smallest'
	The state of the s	Total	9	
'				

	Total		12	
(11)	or Enable further analyses	B1	1	
(b)(i) (ii)	median and IQR or median and IQR are exact values but \overline{x} and s are estimates Use all available data	B1	1	
(b)(f)	and use of mean $(\overline{x}) = \frac{\sum fx}{95}$ Unknown values (16) have no effect on	(M1)	4	Allow for $4.1 \le \overline{x} \le 4.3$
	If neither correct but mid-points of 7 and 12 seen	(B1)		
	Standard Deviation (s_n, s_{n-1}) = 3.88 to 3.91	B2		$\sum fx^2 = 3111$ AWFW (3.887 or 3.907)
(iii)	$Mean(\overline{x}) = 4.2$	B2		CAO $\sum fx = 399$
	If neither correct but CF attempted and matched correctly with ≥ 5 x-values	(M1) (A1)	4	Allow for median = $2 + \frac{x}{17}$
	Interquartile Range $(72^{\text{nd}} - 24^{\text{th}})$ = 4 - 2 = 2	B2		CAO Allow B1 for identification of 4 and 2 B0 if shown method is incorrect
	$Median (48^{th}) = 3$	B2		CAO; B0 if shown method is incorrect
(ii)	CF: 4 17 41 58 73 84 89 95 x: 0 1 2 3 4 9 14 15			
	Range = 15	B1	2	CAO
4(a)(i)	Mode = 2	B1		CAO