June 2010

Question 1

	$f(x) = \frac{x e^{-x/\lambda}}{\lambda^2} \qquad (x > 0)$	
(i)	$\mathbf{E}(X) = \frac{1}{\lambda^2} \int_0^\infty x^2 \mathrm{e}^{-x/\lambda} \mathrm{d}x$	M1 for integral for E(X) M1 for attempt to integrate by parts
	$=\frac{1}{\lambda^2}\left\{\left[-\lambda x^2 \mathrm{e}^{-x/\lambda}\right]_0^\infty + \int_0^\infty \lambda \cdot 2x \mathrm{e}^{-x/\lambda} \mathrm{d}x\right\}$	For second term: M1 for use of integral of pdf or for integr'g by parts again
	$= \frac{1}{\lambda^2} \{ [0-0] \} + 2\lambda . 1 = 2\lambda .$	A1
	$\mathrm{E}(\overline{X}) = \mathrm{E}(X) \qquad \therefore \mathrm{E}(\hat{\lambda}[=\frac{1}{2}\overline{X}]) = \lambda \qquad \therefore \hat{\lambda} \text{ is unbiased.}$	M1 A1 E1 [7]
(ii)	$\operatorname{Var}\left(\hat{\lambda}\right) = \frac{1}{4}\operatorname{Var}\left(\overline{X}\right) = \frac{1}{4}\frac{\operatorname{Var}\left(X\right)}{n}$	M1
	$\mathrm{E}(X^{2}) = \frac{1}{\lambda^{2}} \int_{0}^{\infty} x^{3} \mathrm{e}^{-x/\lambda} \mathrm{d}x$	M1 for use of E(<i>X</i> ²) By parts M1
	$=\frac{1}{\lambda^2}\left\{\left[-\lambda x^3 \mathrm{e}^{-x/\lambda}\right]_0^\infty + \int_0^\infty 3\lambda x^2 \mathrm{e}^{-x/\lambda}\mathrm{d}x\right\}$	
	$=\frac{1}{\lambda^2}\left\{\left[0-0\right]\right\}+3\lambda E(X) = 6\lambda^2.$	M1 for use of E(X) A1 for $6\lambda^2$
	$\therefore \operatorname{Var}(X) = \operatorname{E}(X^{2}) - \left\{\operatorname{E}(X)\right\}^{2} = 6\lambda^{2} - 4\lambda^{2} = 2\lambda^{2}.$	A1
	$\therefore \operatorname{Var}\left(\hat{\lambda}\right) = \frac{\lambda^2}{2n}.$	A1 [7]
(iii)	Variance of $\hat{\lambda}$ becomes very small as <i>n</i> increases.	E1
	It is unbiased and so becomes increasingly concentrated at the correct value λ .	E1 [2]
(iv)	$\mathrm{E}(\widetilde{\lambda}) = (\frac{1}{8} + \frac{1}{4} + \frac{1}{8}) 2\lambda = \lambda$. $\therefore \widetilde{\lambda}$ is unbiased.	$\mathrm{E}ig(ilde{\lambda}ig)$: B1; "unbiased": E1
	$\operatorname{Var}\left(\tilde{\lambda}\right) = \left(\frac{1}{64} + \frac{1}{16} + \frac{1}{64}\right) 2\lambda^2 = \frac{3}{16}\lambda^2.$	M1 A1
	: relative efficiency of $\tilde{\lambda}$ to $\hat{\lambda}$ is $\frac{\lambda^2/6}{3\lambda^2/16} = \frac{8}{9}$.	M1 any comparison of variancesM1 correct comparisonA1 for 8/9
	Special case. If done as Var($\tilde{\lambda}$) / Var($\hat{\lambda}$), award 1 out of 2 for the second M1 and the A1 in the scheme.	[Note. This M1M1A1 is allowable in full as FT if everything is plausible.]
	So $\hat{\lambda}$ is preferred.	E1 (FT from above) [8]
		[Note. This M1M1A1 is allowable in full

June 2010

Question 2

June 2010

Question 3

4769

(i)	H_0 is accepted if -1.96 < value of test statistic < 1.96	M1 double inequality B1 1.96
	i.e. if $-1.96 < \frac{(\overline{x}_1 - \overline{x}_2) - (0)}{\sqrt{\frac{1.2^2}{8} + \frac{1.4^2}{10}}} < 1.96$	M1 num ^r of test statistic M1 den ^r of test statistic
	i.e. if $-1.96 \times 0.6132 < \overline{x}_1 - \overline{x}_2 < 1.96 \times 0.6132$	A1
	i.e. if $-1.20(18) < \overline{x}_1 - \overline{x}_2 < 1.20(18)$	A1
Note. l	Use of $\mu_1 - \mu_2$ instead of $\overline{x_1} - \overline{x_2}$ can score M1 B1 M0 M1 A0 A0.	Special case. Allow 1 out of 2 of the A1 marks if 1.645 used provided all 3 M marks have been earned. [6]
(ii)	$\overline{x}_1 - \overline{x}_2 = 1.4$	B1 FT if wrong
	which is outside the acceptance region	M1 [FT can's acceptance region if reasonable]
	so H_0 is rejected.	E1
	CI for $\mu_1 - \mu_2$: 1.4 ± (2.576 × 0.6132),	M1 for 1.4 B1 for 2.576
	i.e. 1.4 ± 1.5796 , i.e. $(-0.18 [-0.1796], 2.97[96])$	M1 for 0.6132 A1 cao for interval
(iii)	Wilcoxon rank sum test (or Mann-Whitney form of test)	[7] M1
	Ranks are:First1413108611Second212314759	M1 Combined ranking A1 Correct [allow up to 2 errors; FT provided M1 earned]
	W = 14 + 13 + 10 + 8 + 6 + 11 = 62 [or 8 + 8 + 7 + 7 + 6 + 5 = 41 if M-W used]	B1
	Refer to $W_{6,8}$ [or $MW_{6,8}$] tables.	M1 No FT if wrong
	Lower 21/2% critical point is 29 [or 8 if M-W used].	A1
		Special case 1. If M1 for $W_{6,8}$ has not been awarded (likely to be because rank sum 43 has been used, which should be referred to $W_{8.6}$), the next two M1 marks can be earned but <i>nothing beyond them</i> .
	Consideration of upper 21/2% point is also needed.	M1
	Eg: by using symmetry about mean of $\left(\frac{1}{2} \times 6 \times 8\right) + \left(\frac{1}{2} \times 6 \times 7\right)$	M1 for any correct method
	= 45, critical point is 61. [For M-W: mean is $\frac{1}{2} \times 6 \times 8$ = 24, hence critical point is 40.]	A1 if 61 correct
	-	
	Result is significant. Seems (population) medians may not be assumed equal.	E1, E1 Special case 2 (does not apply if Special Case 1 has been invoked). These 2 marks may be earned even if only 1 or 2 of the preceding 3 have been
		earned. [11]

4769

Question 4

(i) Randomised blocks	B1
Eg:-	
WEST D C D EAST A B C	
C A A B D B	
Plots in strips (blocks)	M1
correctly aligned w.r.t. fertility trend.	E1
Each letter occurs at least once in each block in a random arrangement.	M1 E1
	[5]
(ii) μ = population [B1] grand mean for whole experiment [B1] α_i = population [B1] mean amount by which the <i>i</i> th treatment differs	4 marks, as
from μ [B1]	shown
α ind N [P4 accept "upcorrelated"] (0 [P1] σ^2 [P1])	3 marks, as
$e_{ij} \sim \text{ind N} [B1, \text{ accept "uncorrelated"]} (0 [B1], \sigma^2 [B1])$	shown
	[7]
(ii) Totals are 62.7 65.6 69.0 67.8 all from samples of size 5	
Grand total 265.1 "Correction factor" CF = 265.1 ² /20 = 3513.9005	
Total SS = 3524.31 – CF = 10.4095	M1 for attempt to
Between varieties SS = $\frac{62.7^2}{5} + \frac{65.6^2}{5} + \frac{69.0^2}{5} + \frac{67.8^2}{5} - CF$	form three sums of squares.
Between varieties $SS = \frac{1}{5} + \frac{1}{5} + \frac{1}{5} + \frac{1}{5} - CF$	M1 for correct
= 3518.498 – CF = 4.5975	method for any two.
Posidual SS (by subtraction) = 10,4005 = 4,5075 = 5,8120	A1 if each
Residual SS (by subtraction) = 10.4095 – 4.5975 = 5.8120	calculated SS is correct.
Source of variation SS df MS [M1] MS ratio [M1]	5 marks within
Between varieties 4.5975 3 [B1] 1.5325 4.22 [A1 cao]	the table, as
Residual 5.8120 16 [B1] 0.36325 Total 10.4095 19	shown
Refer MS ratio to $F_{3.16}$.	M1 No FT if
	wrong
Upper 5% point is 3.24.	A1 No FT if wrong
Significant.	E1 E1
Seems the mean yields of the varieties are not all the same.	[12]