PMT

47	69 Statistics 4 June 2009			
Q1	Follow-through all intermediate results in this question, unless obvious nonsense.			
(i)	$P(X \ge 2) = 1 - \theta - \theta (1 - \theta) = (1 - \theta)^2 [0.e.]$	M1 A1		
	$L = [\boldsymbol{\theta}]^{n_0} [\boldsymbol{\theta}(1-\boldsymbol{\theta})]^{n_1} [(1-\boldsymbol{\theta})^2]^{n-n_0-n_1}$	M1 A1	Product form Fully correct	
	$= \theta^{n_0+n_1} (1-\theta)^{2n-2n_0-n_1}$	A1	BEWARE PRINTED ANSWER	5
(ii)	$\ln L = (n_0 + n_1) \ln \theta + (2n - 2n_0 - n_1) \ln (1 - \theta)$	M1 A1		
	$\frac{d \ln L}{d\theta}$	M1		
	$= \frac{n_0 + n_1}{\theta} - \frac{2n - 2n_0 - n_1}{1 - \theta}$	A1		
	$\begin{array}{c} \theta & 1 - \theta \\ = 0 \end{array}$	M1		
	$\Rightarrow (1 - \hat{\theta}) (n_0 + n_1) = \hat{\theta} (2n - 2n_0 - n_1)$. 4		
	$\Rightarrow \hat{\theta} = \frac{n_0 + n_1}{2n - n_0}$	A1		6
(iii)	$E(X) = \sum_{n=1}^{\infty} x \theta (1-\theta)^{x}$	M1		
	$= \theta \{0 + (1 - \theta) + 2(1 - \theta)^{2} + 3(1 - \theta)^{3} +\}$ $= \frac{1 - \theta}{\theta}$	A2	Divisible, for algebra; e.g. by "GP of GPs" BEWARE PRINTED ANSWER	
	So could sensibly use (method of moments)			
	$\widetilde{ heta}$ given by $\displaystyle \frac{1-\widetilde{ heta}}{\widetilde{ heta}}$ = \overline{X}	M1		
	$\Rightarrow \tilde{\theta} = \frac{1}{1 + \overline{X}}$	A1	BEWARE PRINTED ANSWER	
	To use this, we need to know the exact numbers of faults for components with "two or more".	E1		6
(iv)	$\bar{x} = \frac{14}{100} = 0.14$	B1		
	$\widetilde{\theta} = \frac{1}{1+0.14} = 0.8772$	B1		
	Also, from expression given in question,			
	$Var(\tilde{\theta}) = \frac{0.8772^2 (1 - 0.8772)}{100}$	B1		
	= 0.000945			
	CI is given by 0.8772 \pm 1.96 x $\sqrt{0.000945}$ = (0.817, 0.937)	M1 B1 M1 A1	For 0.8772 For 1.96 For $\sqrt{0 \cdot 000945}$	7

PM	I

Q2				
(i)	Mgf of Z = E (e ^{<i>i</i>Z}) = $\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{tz - \frac{z^2}{2}} dz$	M1		
	Complete the square	M1		
	$tz - \frac{z^2}{2} = -\frac{1}{2}(z-t)^2 + \frac{1}{2}t^2$	A1		
	$tz - \frac{1}{2} = -\frac{1}{2}(z-t)^2 + \frac{1}{2}t^2$	A1	2	
	$= e^{\frac{t^2}{2}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{(z-t)^2}{2}} dt = e^{\frac{t^2}{2}}$	M1	For taking out factor $e^{\frac{t^2}{2}}$	
	$= e^{2} \int_{-\infty} \frac{1}{\sqrt{2\pi}} e^{-2} dt = e^{2}$	M1	For use of pdf of N(t,1)	
	Pdf of N(t,1)	M1	For $\int pdf = 1$	
			t^2	
	$\therefore \int = 1$	A1	For final answer $e^{\frac{t^2}{2}}$	8
(ii)	Y has mgf $M_{\gamma}(t)$			
	Mgf of $aY + b$ is $E[e^{t(aY+b)}]$	M1		
	$= e^{bt} E[e^{(at)Y}] = e^{bt} M_Y(at)$	1	For factor e ^{bt}	
	$= e L[e -] = e M_y(u)$	1 1	For factor $E[e^{(at)Y}]$	4
		•	For final answer	т
(iii)	$Z = \frac{X - \mu}{\sigma}$, so $X = \sigma Z + \mu$	M1		
	0	1	For factor $e^{\mu t}$	
	$\therefore M_{x}(t) = \mathrm{e}^{\mu t} \cdot \mathrm{e}^{\frac{(\sigma t)^{2}}{2}} = \mathrm{e}^{\mu t + \frac{\sigma^{2} t^{2}}{2}}$	1	$\int \frac{(\sigma t)^2}{2}$	
	$\therefore M_x(t) = e^{t/t} \cdot e^{t/t} = e^{t/t} \cdot e^{t/t}$	1	For factor e^{2} For final answer	4
(***)	V			
(iv)	$W = e^{X}$	M1	$\Gamma_{aa} \Gamma[\langle X \rangle k]$	
	$E(W^{k}) = E[(e^{X})^{k}] = E(e^{kX}) = M_{X}(k)$	A1	For $E[(e^X)^k]$	
			For $E(e^{kX})$	
		A1	For $M_{\chi}(k)$	
	$\therefore E(W) = M_X(1) = \mathrm{e}^{\mu + \frac{\sigma^2}{2}}$	M1 A1		
	$E(W^2) = M_x(2) = e^{2\mu + 2\sigma^2}$	M1 A1		
		A1		
	: $\operatorname{Var}(W) = e^{2\mu + 2\sigma^2} - e^{2\mu + \sigma^2} [= e^{2\mu + \sigma^2} (e^{\sigma^2} - 1)]$			8

Mark Scheme

PMT

Q3				
(i)	$\overline{x} = 126 \cdot 2 \ s = 8.7002 \ s^2 = 75 \cdot 693$ $\overline{y} = 133 \cdot 9 \ s = 10.4760 \ s^2 = 109 \cdot 746$	A1	A1 if all correct. [No mark for use of s_n , which are 8.2537 and 9.6989 respectively.]	
	$H_0: \mu_A = \mu_B$	1	<u>Do not</u> accept $\overline{X} = \overline{Y}$ or	
	$H_0: \mu_A \neq \mu_B$	1	similar.	
	Where μ_A, μ_B are the population means. Pooled s^2	·		
	$=\frac{9\times75\cdot69\dot{3}+6\times109\cdot47\dot{6}}{15}=\frac{681\cdot24+658\cdot48}{15}$ = 89 \cdot 314\ddot [\sqrt{=9.4506}]	B1		
	Test statistic is $\frac{126 \cdot 2 - 133 \cdot 9}{\sqrt{89 \cdot 314\dot{6}}\sqrt{\frac{1}{10} + \frac{1}{7}}} = -\frac{7 \cdot 7}{4 \cdot 6573} = -1 \cdot 653$	M1 A1		
	Refer to t_{15}	1	No FT if wrong	
	Double-tailed 10% point is 1.753 Not significant No evidence that population mean concentrations differ.	1 1 1	No FT if wrong	10
(ii)	There may be consistent differences between days (days of week, types of rubbish, ambient conditions,) which should be allowed for.	E1 E1		
	Assumption: Normality of population of differences.	1		
	Differences are 7.4 -1.2 11.1 5.5 6.2 3.7 -0.3 1.8 3.6 $[\vec{d} = 4.2, s = 3.862 (s^2 = 14.915)]$ Use of $s_n (= 3.641)$ is <u>not</u> acceptable, even in a	M1	A1 Can be awarded here if NOT awarded in part (i)	
	denominator of $s_n / \sqrt{n-1}$]			
	Test statistic is $\frac{4 \cdot 2 - 0}{3 \cdot 862 / \sqrt{9}} = 3.26$	M1 A1		
	Refer to t_8 Double-tailed 5% point is 2.306 Significant Seems population means differ	1 1 1 1	No FT if wrong No FT if wrong	
	, . ,			10

June 2009

(iii)	ii) Wilcoxon rank sum test Wilcoxon signed rank test H_0 : median _A = median _B				B1			
					B1 ₁	[Or more formal		
	H_0 . median _A = H_1 : median _A =					1 1	[Or more formal statements]	4
						I	Statementsj	4
Q4								
(i)	Description must be in <u>context</u> . If no context given, mark according to scheme and then give half-marks, rounded down. Clear description of "rows".				E1			
	And "columns	S"				E1 E1 E1		
	As extraneous factors to be taken account of in the design, with "treatments" to be compared. Need same numbers of each Clear contrast with situations for completely randomised design and randomised trends.				E1 E1 E1 E1			
					E1		9	
(ii)	e_{ij} ~ ind N (0,	σ²)				1 1 1	Allow uncorrelated For 0 For σ ²	
	α_i is population mean effect by which <i>i</i> th treatment differs from overall mean					1 1		5
(iii)	Source of Variation	SS	df	MS	MS ratio	1		5
	Between Treatments	92.30	4	23.075	5.034	1		
	Residual	68.76	15	4.584				
	Total	161.06	19	4		1		
	Refer to $F_{4.15}$					1	No FT if wrong	
	Upper 1% point is 4.89 Significant, seems treatments are not all the same				1	No FT if wrong		
					1	No T T II WIONG	10	