4769

Q1				
(i)	$L = \frac{1}{\sigma_1 \sqrt{2\pi}} e^{-\frac{(W_1 - \mu)^2}{2\sigma_1^2}} \cdot \frac{1}{\sigma_2 \sqrt{2\pi}} e^{-\frac{(W_2 - \mu)^2}{2\sigma_2^2}}$	M1 M1 A1	Product form. Two Normal terms. Fully correct.	
	$\ln L = \text{const} - \frac{1}{2\sigma_1^2} (W_1 - \mu)^2 - \frac{1}{2\sigma_2^2} (W_2 - \mu)^2$	M1 A1		
	$\frac{d\ln L}{d\mu} = \frac{2}{2\sigma_1^2} (W_1 - \mu) + \frac{2}{2\sigma_2^2} (W_2 - \mu)$	M1 A1	Differentiate w.r.t. μ.	
	$= 0 \Longrightarrow \sigma_2^2 W_1 - \sigma_2^2 \mu + \sigma_1^2 W_2 - \sigma_1^2 \mu = 0$ $\sigma_2^2 W_1 + \sigma_2^2 W_2$	A1		
	$\Rightarrow \hat{\mu} = \frac{\sigma_2 w_1 + \sigma_1 w_2}{\sigma_1^2 + \sigma_2^2}$	A1	BEWARE PRINTED ANSWER.	
	Check this is a maximum. $d^2 \ln I = 1$	M1		
	E.g. $\frac{d^2 m L}{d\mu^2} = -\frac{1}{\sigma_1^2} - \frac{1}{\sigma_2^2} < 0$	A1		11
(ii)	$E(\hat{\mu}) = \frac{\sigma_2^2 \mu + \sigma_1^2 \mu}{\sigma_1^2 + \sigma_2^2} = \mu$	M1		
	∴ unbiased.	A1		2
(iii)	$\operatorname{Var}(\hat{\mu}) = \left(\frac{1}{\sigma_1^2 + \sigma_1^2}\right)^2 \cdot (\sigma_2^4 \sigma_1^2 + \sigma_1^4 \sigma_2^2)$	B1 B1	First factor. Second factor.	
	$=\frac{\sigma_1^2\sigma_2^2}{\sigma_1^2+\sigma_2^2}$		Simplification not required at this point.	2
(iv)	$T = \frac{1}{2}(W_1 + W_2)$	D1		
	$Var(T) = \frac{1}{4}(\sigma_1^2 + \sigma_2^2)$ Relative efficiency (y) = $\frac{Var(\hat{\mu})}{Var(T)}$	M1 M1	Any attempt to compare variances. If correct.	
	$=\frac{\sigma_{2}^{4}\sigma_{1}^{2}+\sigma_{1}^{4}\sigma_{2}^{2}}{(\sigma_{1}^{2}+\sigma_{2}^{2})^{2}}\cdot\frac{4}{\sigma_{1}^{2}+\sigma_{2}^{2}}$	A1		
	$=\frac{4\sigma_{1}^{2}\sigma_{2}^{2}}{(\sigma_{1}^{2}+\sigma_{2}^{2})^{2}}$	A1	BEWARE PRINTED ANSWER.	5
(v)	E.g. consider $\sigma_1^2 + \sigma_2^2 - 2\sigma_1\sigma_2 = (\sigma_1 - \sigma_2)^2 \ge 0$	M1		
	$\therefore \text{ Denominator} \geq \text{numerator}, \therefore \text{ fraction} \leq 1$	E1		
	[Both $\hat{\mu}$ and <i>T</i> are unbiased,] $\hat{\mu}$ has smaller variance than <i>T</i> and is therefore better.	E1 E1		4
				24

PMT

Q2	$f(x) = \frac{\lambda^{k+1} x^k e^{-\lambda x}}{k!}, [x > 0 (\lambda > 0, k \text{ integer } \ge 0)]$ Given: $\int_{-\infty}^{\infty} u^m e^{-u} du = m!$			
	J ₀ u v u u			
(i)	$M_{X}(\theta) = E[e^{\theta x}]$ $= \int_{0}^{\infty} \frac{\lambda^{k+1}}{k!} x^{k} e^{-(\lambda-\theta)x} dx$ Put $(\lambda - \theta)x = u$ $= \frac{\lambda^{k+1}}{k!(\lambda-\theta)^{k+1}} \int_{0}^{\infty} u^{k} e^{-u} du$ $= \left(\frac{\lambda}{\lambda-\theta}\right)^{k+1}$	M1 M1 A1 A1 A1 A1 A1	For obtaining this expression after substitution. Take out constants. (Dep on subst.) Apply "given": integral = <i>k</i> ! (Dep on subst.) BEWARE PRINTED ANSWER.	7
(ii)	$Y = X_1 + X_2 + \dots + X_n$ By convolution theorem:- mgf of Y is $\{M_X(\theta)\}^n$ i.e. $\left(\frac{\lambda}{\lambda - \theta}\right)^{nk+n}$ $\mu = M'(0)$ $M'(\theta) = \lambda^{nk+n} (-nk - n)(\lambda - \theta)^{-nk-n-1}(-1)$ $\therefore \mu = \frac{nk + n}{\lambda}$ $\sigma^2 = M''(0) - \mu^2$ $M''(\theta) = (nk + n)\lambda^{nk+n} (-nk - n - 1)(\lambda - \theta)^{-nk-n-2}(-1)$ $\therefore M''(0) = (nk + n)(nk + n + 1)/\lambda^2$ $\therefore \sigma^2 = \frac{(nk + n)(nk + n + 1)}{\lambda^2} - \frac{(nk + n)^2}{\lambda^2}$ $= \frac{nk + n}{\lambda^2}$	B1 M1 A1 M1 A1 M1 A1		8
(iii)	[Note that $M_{Y}(t)$ is of the same functional form as $M_{X}(t)$ with $k + 1$ replaced by $nk + n$, i.e. k replaced by $nk + n - 1$. This must also be true of the pdf.] Pdf of Y is $\frac{\lambda^{nk+n}}{(nk+n-1)!} \times y^{nk+n-1} \times e^{-\lambda y}$ [for $y > 0$]	B1 B1 B1	One mark for each factor of the expression. Mark for third factor shown here depends on at least one of the other two earned.	3
(iv)	$\lambda = 1, k = 2, n = 5,$ Exact P(Y > 10) = 0.9165 Use of N(15, 15)	M1 M1	Mean. ft (ii). Variance. ft (ii).	

(10-15)			
$P(\text{this} > 10) = P(N(0,1) > \frac{10}{\sqrt{15}} = -1 \cdot 291)$	A1	с.а.о.	
= 0.9017	A1	c.a.o.	
Reasonably good agreement – CLT working	E2	(E1, E1)	6
for only small <i>n</i> .		[Or other sensible comments.]	
			24

		F	νMT
	June 2006		
B1 B1	If all correct. [No marks for use of s_n which are 9.1365 and 14.1823 respectively.]		
B1 B1 B1	Do <u>NOT</u> accept $\overline{X} = \overline{Y}$ or similar.		
B1	$=(12.7444)^2$		
M1			
A1			
M1 A1	No ft from here if wrong. No ft from here if wrong.		

(i)	$\overline{x} = 36.48$ $s = 9.6307$ $s^2 = 92.7507$ $\overline{y} = 45.5$ $s = 14.8129$ $s^2 = 219.4218$	B1	If all correct. [No marks for use of s_n which are 9.1365 and 14.1823	
	Assumptions: Normality of both populations	B1	respectively.]	
	equal variances	B1		
	Where μ_A , μ_B are the population means.	B1	Do <u>NOT</u> accept $X = Y$ of similar.	
	Pooled $s^2 = \frac{9 \times 92.7507 + 11 \times 219.4218}{20}$ = $\frac{834.756 + 24136.64}{20} = 162.4198$ Test statistic is $\frac{36.48 - 45.5}{\sqrt{162.4198}} \sqrt{\frac{1}{10} + \frac{1}{12}}$	B1 M1	= (12.7444) ²	
	$=\frac{-9.02}{5.4568}=-1.653$	A1		
	Refer to t_{20} .	M1	No ft from here if wrong.	
	Double tailed 5% point is 2.086.	A1	No ft from here if wrong.	
	No evidence that population mean times	A1	ft only c's test statistic.	12
	differ.			
(ii)	Assumption: Normality of underlying	B1		
	population of <u>differences</u> . H ₀ : $\mu_0 = 0$ H ₁ : $\mu_0 > 0$	B1	Do NOT accept $\overline{D} = 0$ or similar	
	Where μ_D is the population mean of "before	B1	The "direction" of D must be	
	- after" differences.		CLEAR. Allow $\mu_A = \mu_B$ etc.	
	Differences are 6.4, 4.4, 3.9, -1.0, 5.6, 8.8, -1.8, 12.1	M1		
	$(\overline{x} = 4.8$ $s = 4.6393)$		[A1 can be awarded here if NOT awarded in part (i)]. Use of s_n (=4.3396) is <u>NOT</u> acceptable,	
			even in a denominator of $\frac{s_n}{\sqrt{n-1}}$	
	Test statistic is $\frac{4.8-0}{1}$			
	4.6393 / √8	M1		
	=2.92(64)	A1		
	Refer to t_7 .	M1	No ft from here if wrong.	
	Single tailed 5% point is 1.895.	A1	No ft from here if wrong.	
	Significant.	Α1 Δ1	ft only c's test statistic.	10
(iii)	The paired comparison in part (ii) eliminates the variability between workers.	E2	(E1, E1)	2
				24

Q3

Q4							
(i)	Latin square.						
	Layout such as:						
	I A Surf II B -aces III C IV D V E	Locati 2 3 B C C D C D E A E A B	ons 4 D E A B C	5 E A B C D	B1 B1	 (letters = paints) Correct rows and columns. A correct arrangement of letters. SC. For a description instead of an example allow max 1 out of 2. 	3
(ii)	$X_{ij} = \mu + \alpha_i + e_{ij}$				B1		
$\mu = \text{population}$ grand mean for whole experiment. $\alpha_i = \text{population}$				B1 B1			
				B1			
	mean amount by which the i^{th} treatment differs from μ . e_{ij} are experimental errors ~ ind N(0, σ^2).				B1		
					B1 B1 B1 B1	Allow "uncorrelated". Mean. Variance.	9
(iii)) Totals are: 322, 351, 307, 355, 291 (each from sample of size 5) Grand total: 1626 "Correction factor" $CF = \frac{1626^2}{25} = 105755.04$						
	Total SS = 106838	– CF = 108	32.96				
	Between paints SS = $\frac{322^2}{5} + + \frac{291^2}{5} - CF$				M1 M1	For correct methods for any two	
	= 106368 – CF =612.96 Residual SS (by subtraction) = 1082.96 – 612.96			A1	SS. If each calculated SS is correct.		
		= 470.	.00				
	Source of variation	SS	df	MS	B1	Degrees of freedom "between	
	Between paints	612.96 470.00	4 20	153.2 4 23.5	ы М1	Degrees of freedom "residual". MS column.	
	$MS \text{ ratio} = \frac{Total}{\frac{153.24}{23.5}} =$	10 <mark>82.96</mark>	24		M1 A1	Independent of previous M1. Dep only on this M1.	

PMT

June 2006

Refer to F _{4, 20}	M1	No ft if wrong. But allow ft of wrong d o f, above	
Upper 5% point is 2.87	A1	No ft if wrong.	
Significant.	A1	ft only c's test statistic and	
Seems performances of paints are not all the same.	A1	ft only c's test statistic and d.o.f.'s.	12
			24