Edexcel Maths S4

Mark Scheme Pack

2002-2015

PhysicsAndMathsTutor.com

Question Number	Scheme	Marks
1. (<i>a</i>)	$b = 2.75, a = \frac{1}{2.91} = 0.344$ 2.75, reciprocal, 0.344	B1, M1, A1
		(3 marks)
2.	<i>d</i> : 5, 13, -8, 2, -3, 4, 11, -1 at least 2 correct	M1
	$(\Sigma d = 23, \Sigma d^2 = 409)$ $\overline{d} = 2.875, sd = 6.9987 (\approx 7.00)$	A1, A1
	$H_0: \mu_d = 0, H_1: \mu_d > 0$	B1
	both	
	$t = \frac{2.875\sqrt{8}}{6.9987} = 1.1618 (\approx 1.16)$ formula and substitution, 1.16	M1, A1
	Critical value $t_7(10\%) = 1.415$ (1 tail)	B1
	Not significant. Insufficient evidence to support the chemist's claim.	A1 ft
		(8 marks)
3. (<i>a</i>)	$E(A_1) = E(X_1) E(X_2) = \mu^2$	B1
	$A_2 = \overline{X}^2, \ \overline{X} \sim N\left(\mu, \frac{\sigma^2}{2}\right) \therefore E(\overline{X}^2) = E(A_2) = , \ \mu^2 + \frac{\sigma^2}{2}$	M1, M1, A1 (4)
<i>(b)</i>	A_1 is unbiased, bias for A_2 is $\frac{\sigma^2}{2}$	B1, B1 (2)
(C)	Used A_1 since it is unbiased	B1 (1)
(<i>d</i>)	$E(\overline{X}^2) = \mu^2 + \frac{\sigma^2}{2}; \text{ as } n \to \infty, E(\overline{X}^2) \to \mu^2$	M1
	$\operatorname{Var}(\overline{X}^2) = \frac{2\sigma^4}{n^2} + \frac{4\sigma^2\mu^2}{n}; \text{ as } n \to \infty, \operatorname{Var}(\overline{X}^2) \to 0$	M1
	\overline{X}^2 is a consistent estimator of μ^2	A1 (3)
		(10 marks)

Que Nur	estion nber	Scheme	Mark	s
4.	(<i>a</i>)	H ₀ : $\mu = 150.9$ [accept ≥ 150.9], H ₁ : $\mu < 150.9$ both	B1	
		$s^{2} = \frac{1}{29} \left(646904.1 - \frac{(4400.7)^{2}}{30} \right) = \frac{1365.727}{29} = 47.1$	M1	
		test statistic $t = \frac{30}{s / \sqrt{30}} = -3.36$	M1 A1	
		critical value $t_{29}(5\%) = (-)1.669$	B1	
		significant, evidence to confirm doctor's statement	A1 ft	(6)
	(<i>b</i>)	H ₀ : $\sigma^2 = 36$, H ₁ : $\sigma^2 \neq 36$ both	B1	
		test statistic $\frac{(n-1)s^2}{\sigma^2}$ =, $\frac{1365.727}{36}$ = 37.9	M1, A1	
		critical values χ^2_{29} (5%) upper tail=45.722 χ^2_{29} (5%) lower tail=16.047 not significant	B1, B1	
		Insufficient evidence that variance of the heights of female Indians is	A1 ft	(6)
		different from that of females in the UK	(12 m	arks)
5.	(a)	H ₀ : $\sigma_c^2 = \sigma_p^2$, H ₁ : $\sigma_c^2 \neq \sigma_p^2$,	B1	
		$s_B^2 = \frac{1}{6}(56130 - 7 \times 88.9^2) = \frac{807.53}{6} = 134.6$	M1 A1	
		$s_G^2 = \frac{1}{7} (55746 - 8 \times 83.1^2) = \frac{501.12}{7} = 71.58$	A1	
		$\frac{s_B^2}{s_G^2} = 1.880$	M1	
		critical value $F_{6,7} = 3.87$	B1	
		not significant, variances are the same	A1 ft	(7)
	<i>(b)</i>	$\mathbf{H}_0: \mu_B = \mu_G , \mathbf{H}_1: \mu_B > \mu_G$	B1	
		pooled estimate of variance $s^2 = \frac{6 \times 134.6 + 7 \times 71.58}{13} = 100.6653$	M1	
		test statistic $t = \frac{88.9 - 83.1}{s\sqrt{\frac{1}{7} + \frac{1}{8}}}$	M1 A1	
		critical value $t_{13}(5\%) = 1.771$	B1	
		Insufficient evidence to support parent's claim	A1 ft	(6)
			(13 m	arks)

Que Nun	stion nber	Scheme	Mar	ks
6.	(<i>a</i>)	95% confidence interval for μ is 2.064	B1	
		$1.68 \pm t_{24}(2.5\%)\sqrt{\frac{1.79}{25}} = 1.68 \pm 2.064\sqrt{\frac{1.79}{25}} = (1.13, 2.23)$	M1 A1 A	A1 (4)
	(<i>b</i>)	95% confidence interval for σ^2 is		
		$12.401, < \frac{24 \times 1.79}{\sigma^2} <, 39.364$	B1, M1,	B1
		$\sigma^2 > 1.09, \ \sigma^2 > 3.46$	A1, A1	(5)
	(c)	Require P(X > 2.5) = P $\left(Z > \frac{2.5 - \mu}{\sigma}\right)$ to be as small as possible OR		
		$\frac{25-\mu}{\sigma}$ to be as large as possible; both imply lowest σ and μ .	M1 M1	
		$\frac{25 - 1.13}{\sqrt{1.09}} = 1.31$	M1	
		P(Z > 1.31) = 1 - 0.9049 = 0.0951	A1	(4)
			(13 m	narks)
7.	(<i>a</i>)	X is the number of defectives, $X \sim B(5, p)$		
		size = P(reject H ₀ $p = 0.1$) = P(X > 2 $p = 0.1$)	M1	
		= 1 - 0.9914 = 0.0086	A1	(2)
	(h)	r = P(X > 2 n = 0.2) 1 = 0.9421 = 0.0579	M1, M1,	A1
	(0)	r = 1 (n > 2 + p = 0.2), 1 = 0.0572		(3)
	(C)	<i>Y</i> is the number of defectives, $Y \sim B(10, p)$		
		P(Type I error) = P($Y > 4 p = 0.1$) = 1 – 0.9984 = 0.0016	M1 A1	(2)
	(d)	s = P(Y > 4 p = 0.4) = 1 - 0.6331 = 0.3669	B1	(1)
	(<i>e</i>)	Graph	G4	(4)
	(f)	(i) Intersection $0.32 - 0.33$	B1	
		(ii) $p > 0.32$; Assistant's test is more powerful (sensible comment)	B1	(2)
	(g)	Consider costs – smaller sample so test is cheaper	B1	
		More powerful for $p < 0.32$ and $p > 0.32$ is unlikely	B1	(2)
			(16 n	narks)

Question number	Scheme		Marks
1. (a)	$\mathbf{H}_0: \boldsymbol{\sigma}_A^2 = \boldsymbol{\sigma}_B^2, \ \mathbf{H}_1: \boldsymbol{\sigma}_A^2 \neq \boldsymbol{\sigma}_B^2$	both	B1
	critical values $F_{24,25} = 1.96$ and $\frac{1}{F_{24,25}} = 0.510$	both	B1
	$\frac{s_B^2}{s_A^2} = 2.10 \text{ or } \frac{s_A^2}{s_B^2} = 0.476$	both	M1A1
	Since 2.10 or 0.476 are in the critical region we reject H_0 and		
	conclude there is evidence that the two variances are different.		A1∫
(b)	The populations of pebble lengths are normal		(5) B1
			6 (1)
2.			
	$H_0: \mu = 5.1, H_1: \mu < 5.1$	both	B1
	v = 9 Critical Region $t < 2.262$	9	B1 B1
	$\overline{x} = 4.91$	4.91	B1 B1
	$s^{2} = \frac{241.89 - 10 \times (4.91)^{2}}{9} = 0.0899$		M1
	s = 0.300	0.0899 or 0.300	A1
	$t = \frac{4.91 - 5.1}{\frac{0.3}{\sqrt{-5}}} = -2.00$		M1A1
	$\sqrt{10}$		
	is less than those grown previously	context	A1 ∫ (9)
			9

Question number	Scheme		Marks	
3 (a)	1-0.8891=0.1109		B1	
(b) (c) (i) (ii)	$1-(P(0)+P(1)+P(2)) = 1-((1-p)^{12}+12p(1-p)^{11}+66p^2(1-p)^{10}) = 1-(1-p)^{10}((1-p)^2+12p(1-p)+66p^2) = 1-(1-p)^{10}(1+10p+55p^2)**given**$ 1-0.5583=0.442 1-0.00281=0.997 The test is more discriminating for the larger value of p	CSO	M1 M1A1 A1 M1A1 A1 B1 9	 (1) (4) (3) (1)
4 (a) (b)	$s^{2} = \frac{2962 - 15 \times \left(\frac{208}{15}\right)^{2}}{14} = 5.55 \text{ or } (n-1)s^{2} = 2962 - \frac{208^{2}}{15} = 77.3$ $\frac{14 \times 5.55}{23.685} < \sigma^{2} < \frac{14 \times 5.55}{6.571}$ $3.28 < \sigma^{2} < 11.83$ Since 9 lies in the interval, yes	either 23.685,6.571	M1A1 M1B1,B1 A1A1 B1,B1(dep	(7) (2) (2)

Question number	Scheme	Marks	
5 (a)(i)	Type I - H_0 rejected when it is true	B1	
(11)	Type II - H_0 is accepted when it is false	B1	
(b)			(2)
	$H_0: \lambda = 5, H_1: \lambda > 5 $ both	B1	
	$P(X \ge 7 \lambda = 5) = 1 - 0.7622 = 0.2378 > 0.05$	M1A1	
	$(OR P(X \ge 9) = 0.0681, P(X \ge 10) = 0.0318, CV=10, 7 \text{ not in CR.} probabs, 10$	M1A1)	
	No evidence of an increase in the number of chicks reared per year. context A1		(4)
(c)	$P(X \ge c \mid \lambda = 5) < 0.05$	M1	(•)
	$P(X \ge 9) = 0.0681, P(X \ge 10) = 0.0318, c=10$ may be seen in (b)	M1	
	P(Type I Error)=0.0318	A1	
(d)	2-8		(3)
	$P(X \le 9 \lambda = 8) = 0.7166$	M1A1	
	$(\mathbf{OP} : \mathbf{f}_{a} = 0 : \mathbf{n}_{a} (\mathbf{d}) = \mathbf{D}(V < 0 1 = 0) = 0.5025$	M1A1)	
	(OK II $c=9$ III (u), $\Gamma(X \le 6 X - 6) = 0.3923$	((2)
		$\begin{pmatrix} 11 \end{pmatrix}$	(2)
		\smile	
6 (a)	$E\left(\frac{2}{2}X_{1}-\frac{1}{2}X_{2}+\frac{5}{2}X_{3}\right)=\frac{2}{2}\mu-\frac{1}{2}\mu+\frac{5}{2}\mu=\mu$	M1A1	
	$\begin{pmatrix} 3 & 2 & 6 \end{pmatrix} 3 & 2 & 6 \\ F(V) = \mu \implies \text{upbiased}$	D1	
	$E(T) - \mu \implies unbrased$	DI	(3)
(b)	$E(aX_1 + bX_2) = a\mu + b\mu = \mu$	M1	(0)
	a+b=1	A1	
	$\operatorname{Var}(aX_1 + bX_2) = a^2\sigma^2 + b^2\sigma^2$	M1A1	
	$=a^2\sigma^2+(1-a)^2\sigma^2$	M1	
	$=(2a^2-2a+1)\sigma^2$	A1	
(c)	1		(6)
	Min value when $(4a-2)\sigma^2 = 0$ $\frac{d}{da}(Var) = 0$, all correct M1A1		
	$\Rightarrow 4a - 2 = 0$	A1	
	$a = \frac{1}{b} = \frac{1}{b}$	A 1 A 1 C	
	$u = \frac{1}{2}, v = \frac{1}{2}.$	AIAIJ	
		14	(5)

Question number	Scheme	Ma	rks	
7				
(a)	$s_p^2 = \frac{7 \times 7.84 + 7 \times 4}{7 + 7} = 5.92$		M1	
	$s_p = 2.433105$	awrt 2.43	A1	
	$\mathbf{H}_0: \boldsymbol{\mu}_{\mathbf{A}} = \boldsymbol{\mu}_{\mathbf{B}}, \ \mathbf{H}_1: \boldsymbol{\mu}_{\mathbf{A}} \neq \boldsymbol{\mu}_{\mathbf{B}}$	both	B1	
	$t = \frac{26.125 - 25}{\sqrt{1 - 1}} = 0.92474$ av	wrt 0.925	M1A1	
	$2.43\sqrt{\frac{1}{8}+\frac{1}{8}}$			
	$t_{14}(2.5\%) = 2.145$	2.145	B1	
	Insufficient evidence to reject H_0 that there is no difference in the means.		A1∫	(7)
(b)	<i>d</i> =M1-M2		1.61	(7)
	2,5,-2,1,3,-4,1,3 \overline{J} 9 1 125	1 105	MI D1	
	$a = \frac{-}{8} = 1.125$	1.125	BI	
	$s_d^2 = \frac{69 - 8 \times 1.125^2}{7} = 8.410714$	awrt 8.41	M1A1	
	$H_0: \delta = 0, H_1: \delta \neq 0$	both	B1	
	$t = \frac{1.125}{\sqrt{8.41}} = 1.0972$	awrt 1.10	M1A1	
	$\sqrt{\frac{0.41}{8}}$			
	$t_{7}(2.5\%) = 2.365$	2.365	B1	
	There is no significant evidence of a difference between method A and method B.		A1∫	
				(9)
(C)	Paired sample as they are two measurements on the same orange		B1	
				(1)
				7

Questi numb	ion oer	Scheme	Marks
1.		P(X > 2.85) = 0.05	B1
		$P(X < \frac{1}{5.67}) = 0.01$	B1
		$\therefore P(\frac{1}{5.67} < X < 2.85) = 1 - 0.05 - 0.01$	M1
		= 0.94	A1
			(4 marks)
2.		H ₀ : $\sigma^2 = 4$; H ₁ : $\sigma^2 > 4$ both	B1
		$v = 19, X_{19}^2 (0.05) = 30.144$ 30.144	B1
		$\frac{(n-1)S^2}{\sigma^2} = \frac{19 \times 6.25}{4} = 29.6875 \qquad \text{use of } \frac{(n-1)S^2}{\sigma^2}$	M1
		AWRT 29.7	A1
		Since $29.6875 < 30.144$ there is insufficient evidence to reject H ₀ .	A1 ft
		There is insufficient evidence to suggest that the standard deviation is greater than 2	B1 ft
		groator than 2.	(6 marks)
3.	(a)	$P(X \le c_1) \le 0.05; P(X \le 3 \lambda = 8) = 0.0424 \Longrightarrow X \le 3$	M1; A1
		$P(X \ge c_2) \le 0.05; P(X \ge 4 \lambda = 8) = 0.0342 \Longrightarrow X \ge 13$	M1; A1
		$P(X \ge 13 \lambda = 8) = 0.0638$	
		$\therefore \text{ critical region is } \{X \le 3 \cup X \ge 13\}$	A1 ft (5)
(b)) (i)	P $(4 \le X \le 12 \lambda = 10) = P(X \le 12) - P(X \le 3)$ = 0.7916 - 0.0103	M1 M1
		= 0.7813	A1
	(ii)	Power = 1 - 0.7813 = 0.2187	B1 ft (4)
			(9 marks)

Question number	Scheme	Marks
4.	d: 7 2 -3 1 -1 -2 10 5 $\Sigma d = 19; \Sigma d^2 = 193$	M1
	$\therefore \ \overline{d} = \frac{19}{8} = 2.375; \ S_d^2 = \frac{1}{7} \left\{ 193 - \frac{19^2}{8} \right\} = 21.125$	B1; M1 A1
	$H_0: \mu_D = 0; H_1: \mu_D > 0$ both	B1
	$t = \frac{2.375 - 0}{\sqrt{21.125}} = 1.4615$ AWRT 1.46	M1
	V 8	111
	$v = 7 \Rightarrow$ critical region: $t > 1.895$ 1.895	B1
	Since 1.4915 is <u>not</u> in the critical region there is insufficient evidence to reject H_0 and we conclude that there is in sufficient evidence to support the doctors' belief	A1 ft
		(9 marks)
	Alternative:	
	Use of 2 sample <i>t</i> -test \Rightarrow B0 B0 B0 M1 A1 M1 A1 B1 A1 i.e : 6/9 max	
	$S_p^2 = \frac{7 \times 440.125 + 7 \times 501.357}{8 + 8 - 2} = 470.74$	M1 A1
	$t = \frac{216.125 - 213.75}{\sqrt{470.74\left(\frac{1}{8} + \frac{1}{8}\right)}} = 0.0547$	M1 A1
	critical region: $t > 1.761$	B1
	Conclusion as above	A1 ft

Question number	Scheme	Marks	
5. (a)(i)	$E(\hat{\theta}) = \theta$	B1	
(ii)	$E(\hat{\theta}) = \theta \text{ or } E(\hat{\theta}) \rightarrow \theta$	B1	
	and Var $(\hat{\theta}) \rightarrow 0$ as $n \rightarrow \infty$ where n is the sample size	B1	(3)
(b)	$\mathrm{E}(\hat{p}_1) = p, \therefore \mathrm{Bias} = 0$	B1	
	$E(\hat{p}_2) = \frac{5p}{6}, \therefore Bias = \frac{1}{6}p$	B1 B1	
	$\mathrm{E}(\hat{p}_3) = p, \therefore \mathrm{Bias} = 0$	B1	(4)
(c)	$\operatorname{Var}\left(\hat{p}_{1}\right) = \frac{1}{9n^{2}} \left\{ npq + npq + npq \right\}$	M1	
	$=rac{pq}{3n}$	A1	
	$\operatorname{Var}(\hat{p}_{2}) = \frac{1}{36n^{2}} \{npq + 9npq + npq\} = \frac{11pq}{36n}$	A1	
	$\operatorname{Var}(\hat{p}_3) = \frac{1}{36n^2} \{4npq + 9npq + npq\} = \frac{7pq}{18n}$	A1 ((4)
(d) (i)	\hat{p}_1 ; unbiased and smallest variance	B1 dep; B1	
(ii)	\hat{p}_2 ; biased	B1 dep; B1	(4)
		(15 mar	ks)

Question number	Scheme	Marks
6. (a)	$\overline{x} = 123.1$	B1
	s = 5.87745	B1
	(NB: $\Sigma x = 1231$; $\Sigma x^2 = 151847$)	
(i)	95% confidence interval is given by	
	$123.1 \pm 2.262 \times \frac{5.87745}{\sqrt{10}}$	M1
	2.262	B1
	i.e: (118.8958, 127.30418)	A1 ft
	AWRT (119, 127)	A1 A1
(ii)	95% confidence interval is given by	
	$\frac{9 \times 5.87745^2}{19.023} < \sigma^2 < \frac{9 \times 5.87745^2}{2.700} \qquad \text{use of } \frac{(n-1)s^2}{\sigma^2}$	M1
	19.023	B1
	2.700	B1
	i.e; (16.34336, 115.14806)	A1ft
	AWRT (16.3, 115)	A1 A1 (13)
(b)	130 is just outside confidence interval	B1
	16 is just outside confidence interval	B1
	Thus supervisor should be concerned about the speed of the new typist	B1 (3)
		(16 marks)

Question number	Scheme	Marks
7. (a)	$S_A^2 = \frac{1}{10} \{3960540 - \frac{6600^2}{11}\} = 54.0$	B1
	$S_B^2 = \frac{1}{12} \{7410579 - \frac{9815^2}{13}\} = 21.1 \dot{6}$	B1
	H ₀ : $\sigma_A^2 = \sigma_B^2$; H1: $\sigma_A^2 \neq \sigma_B^2$	B1
	CR: $F_{10, 12} > 2.75$	
	$S_A^2 / S_B^2 = \frac{54.0}{21.1\dot{6}} = 2.55118$	M1 A1
	Since 2.55118 is not in the critical region we can assume that the variances are equal.	B1 (6)
(b)	H ₀ : $\mu_B = \mu_A + 150$; H ₁ : $\mu_B > \mu_A + 150$ both	B1
	CR: $t_{22}(0.05) > 1.717$ 1.717	B1
	$S_p^2 = \frac{10 \times 54.0 + 12 \times 21.1\dot{6}}{22} = 36.09\dot{0}\dot{9}$	M1 A1
	$t = \frac{1755 - 6001 - 150}{\sqrt{36.0909(\frac{1}{11} + \frac{1}{13})}} = 2.03157$	M1 A1
	AWRT 2.03	A1
	Since 2.03 is in the critical region we reject H_0 and conclude that the mean weight of cauliflowers from <i>B</i> exceeds that from <i>A</i> by at least 50g.	A1 ft (8)
(c)	Samples from normal populations	
	Equal variances Any two sensible verifications	B1 B1 (2)
	Independent samples	
		(16 marks)

June 2005 6686 Statistics S4 Mark Scheme

•,

Question Number	n Scheme			
.	(a) $P(X > 19.023) = 0.025 \text{ or } P(X < 19.023) = 0.975$ P(X > 2.088) = 0.990 or P(X < 2.088) = 0.010			
	: P(2.08P × X × 19.023) = 0.990-0.025 × 0.975-0.010			
	= 0.965	A1 (3)		
	(b) Upper Critical value of Fiz, 5 = 4.68	Bi		
	hower Critical value of Fizs = 1	MI		
	$= \frac{1}{3.11} = 0.3215 + \frac{1}{0.322}$	A1 (3)		
ລ .	(a) $H_0: \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	BI		
	$S_1^{*} = 14^{*} = 3.0625$ or $8^{*} = 0.32653$ Aber 3.06 $S_2^{*} = 8^{*} =$	ΜιΑΙ		
	C. Y F137 = 3.57 CV: F312 = 3.57 = 0.28011	BI		
	Since 3.0625 is not in the Cretical Region their is indufficient evidence to reject the. There is insufficient evodence of a difference in the variances of the	A1√ (5)		
	(b) The distribution of the population of lengths of fear posts is normally cliptributed.	BI (1)		

6686 Statistics S4 June 2005 Advanced Subsidiary/Advanced Level in GCE Mathematics

Number	Scheme	Mar
3.	het x represent waight of flour.	
	In= toss : I= 1006.875 AWET 1006.9	BI
	$\sum x^2 = 8110611 : s^2 = \frac{1}{7} \left\{ 8110611 - \frac{8055^2}{9} \right\} = 33.26785$	MI
	Allow from Calculator S= 5.76782F or AWRT 5.77	A 1
	Ho: µ = 1010; H1: µ < 1010 both	81
	CV: 161= 1.895	Bı
	$t = \left 1006.875 - 1010 \right = \frac{1}{2} 1.5324$ Ung $\frac{\overline{x} - h}{\overline{x} \sqrt{5}}$	MI
	5.767828 /VE AWET -1.53	۸ı
4	Since -1.53 is not in the critical region (te-1.895) there is infufficient evidence to reject the and thus he wear weight of floor delivered by the machine	A11 (
	1 1010g.	

٠

4. (a) The deate poer not collected in pair.
(b) Undete from twic lambs.
(c) Ay-, whight gender Ay The similar further.
(d)
$$d=B-A$$

 $d: 2, 1-2, 1, 1-8, -1, 2-2, 2, -1-2, 1-1, 2-8$
 $Ed = 11.9; Ed^{2} = 30.01$
 $\therefore d = 1.19; S^{2} = 1.761 (S=1.327)$
Ho: $5=0;$ Hi: $5\neq 0$ Allow μ_{0} for δ box
 $t - \frac{1.19-0}{\sqrt{1.761}} = 2.83574...$
 Mi
 $\mu_{0}=7; CV: t=2.2b2$
Since 2.8357... is in the critical region $(t>2.2b1)$ there
 $is evidence to reject the The (mean)weight gained by
Ke hambs is different for each diet.
(a) Diet $B - it has the higher mean$
(d) Using non-paired t-tert.
Ho: $\mu_{0} = \mu_{0}$; this for f the first for f the first Bi
 $t - \frac{\mu_{0}-\mu_{0}}{\sqrt{5^{2}(t_{0}+t_{0})}} = -2.53 - \frac{\mu_{0}\pi - -3.3}{\sqrt{5^{2}(t_{0}+t_{0})}}$
 $Cv: |t|=2.101$
Conclusion: Mean consight gained is different
B: (4)
B: (4)$

; :

5. (a) A Type I error occurs when Ho is respective when
in fact it is true.
(i) The say g a test is the probability g a TypeI error
(c)
$$X \sim B(\xi, 0.25)$$
 Coach implied
Sign = P(X>6) = (-P(X+6) h=8, 1=0.25)
= 1-0.9994
= 0.0004
(b) Power = P(X>6 | p=1, A=8)
= P(X=T) + P(X=8)
= 8! p²(-p) + p⁴
Tipl
= 8! p²-8p⁴+p⁶
X = 8! - 7.8p⁴+p⁶
X = 8! - 7.5p⁴+p⁶
At (3)
(c) Power when p = 0.3 = 8x0.3² - 7x0.3⁸
= 0.00129
Aver 0.0013
(d) P(Type II error) = 1 - Power (0.3)
= 0.99870---
At (2)
(a) Increase the number g treate
I nerease the critical region

::

$$\begin{array}{c} 6. & (a) \quad Confidence interval is given by \\ \overline{x} \pm \frac{1}{19} \times \frac{5}{16} \\ ie: \quad dofit = 2.539 \times \sqrt{\frac{32}{20}} \\ ie: \quad dofit = 2.539 \times \sqrt{\frac{32}{20}} \\ Hi \ constant \\ ie: \quad 2afit = 1.0155 \\ fis: -(2ab: abs., 2ab.1156) \\ fis: -(2ab.125) \\ fis: -(2ab.125)$$

6686 Statistics S4 June 2005 Advanced Subsidiary/Advanced Level in GCE Mathematics

÷ •

đ

. .

7. (a)
$$E(x) = n_{1}^{2}$$
, $E(Y) = m_{1}^{2}$
 $E(p_{1}) = \frac{q_{1}}{2} \frac{E(x)}{m} + \frac{b(Y)}{m} = p_{1}^{2} \Rightarrow \frac{a_{1}p_{1}}{m} + \frac{b_{1}p_{1}}{m} = p_{1}^{2}$
(b) $E(p_{2}) = \frac{1}{m} \left\{ E(x) + E(Y) \right\}$
 $= \frac{1}{n+m} \left\{ \frac{n_{1}p_{1}}{m} + \frac{m_{1}p_{1}}{m} \right\}$
 $= \frac{1}{n+m} \left\{ \frac{n_{1}p_{1}}{m} + \frac{m_{1}p_{1}}{m} \right\}$
(c) $Var(x) = n_{1}^{2}(1-p_{1}); Var(y) = m_{1}^{2}(1-p_{1})$
 $Var(y) = \frac{a^{2}Var(x)}{n^{2}} + \frac{b^{2}Var(y)}{m^{2}}$
(c) $Var(x) = n_{1}^{2}(1-p_{1}); Var(y) = m_{1}^{2}(1-p_{1})$
 $= \frac{a^{2}n_{1}^{2}(1-p_{1})}{n^{2}} + \frac{b^{2}n_{1}^{2}}{m^{2}}$
(d) $Var(y) = \frac{1}{(n+m)^{2}} \left\{ \frac{n_{1}^{2}(1-p_{1})}{m^{2}} + \frac{m_{1}^{2}}{m^{2}} \right\}$
(e) $Var(y) = \frac{1}{(n+m)^{2}} \left\{ \frac{n_{1}^{2}(1-p_{1})}{m^{2}} + \frac{m_{1}^{2}}{m^{2}} \right\}$
(f) $Var(y) = \frac{1}{(n+m)^{2}} \left\{ \frac{n_{1}^{2}(1-p_{1})}{m^{2}} + \frac{m_{1}^{2}}{m^{2}} \right\}$
(g) $Var(y) = 0 = 0 + m_{1}^{2}(1-p_{1}); Var(y_{2}) = 0 = 0.3335 p(1-p_{1})$
(g) $Var(y_{1}) = 0 = 0 + m_{1}^{2}(1-p_{1}); Var(y_{2}) = 0 = 0.3335 p(1-p_{1})$
(g) $Var(y_{1}) = 0 = 0 + m_{1}^{2}(1-p_{1}); Var(y_{2}) = 0 = 0.3335 p(1-p_{1})$
(h) $Var(y_{1}) = \frac{1}{(n+m)^{2}} \left\{ \frac{n_{1}p(1+p_{1}) + m_{1}p(1+p_{1})}{m^{2}} + \frac{n_{1}p(1-p_{1})}{m^{2}} + \frac{n_{1}p(1-p_$

÷.

edexcel 🛄

January 2006 6686 Statistics S4 Mark Scheme

Question Number	Scheme "	Marks
1 (9)	Ex = 49.6; Ex= 362.36	
	$s^{2} = \frac{1}{6} \left(362.3(-\frac{49.6^{2}}{7}) = 1.8 80952 \text{ aurt } 1.82 \right)$	MIAI (2)
(4)	$CI = \left(\frac{6x \cdot 8 \cdot 8}{12 \cdot 592}, \frac{6 \cdot x \cdot 8 \cdot 8}{1 \cdot 635}\right)$	M
	12-592)-635	BIBI
	= (0.866, 6.67) aut (08(1,667)	A I A I (5)
(c)	0.92 C 0.866, internel does not suffer to = 0.9 as out of range.	81 (i)
		Tork 8
2 (a)(i)	Type 1: He rejected when true	BI
(ħ)	Type II : Ho accepted when false	BI (2)
(b)(i)	$f = \frac{7.5}{50} = 0.15$	BI
	$cr X \leq 3$	BI (2)
(5)	Ho: p=0.15, H, : p<0.15 b-th	B 1
	r=2 in cr XS3 so Ho is rejected	MI
	The new machine has reduced the number of faulty sacks	A-1 (3)
(c)	P(Type 1 error) = P(XE3)p=0.15) = 0.0460	MIAI
		(2)
(a)	$f(faul F_{3}) = \frac{1}{55} = 0.1$	BI
	P(Type I) error) = P(X74 p=01) = 1-02503	MI
	= 0.7497 an quirt 0.750	ATI (3)
(e)	Critacial region changes to XS2. No still rejected.	BI ()
		ToTH 13

6686/01 Statistics S4

تقمسي عظ Advanced Subsidiary/Advanced Level in GCE Mathematics

 $E(\frac{1}{3}\bar{\chi} + \frac{2}{3}\bar{\Upsilon}) = \frac{1}{3}E(\frac{\chi_{1} + \chi_{2} + \chi_{3}}{2}) + \frac{2}{3}E(\frac{\eta_{1} - \eta_{2} + \eta_{3} + \eta_{4}}{4})$ 3(4) (1) MI = = += M = M Herefore un)josed extractor AI (2) $E\left(\frac{5\overline{X}+4\overline{Y}}{a}\right) = \frac{1}{4}\left(5E(\overline{X})+4E(\overline{Y})\right)$ พ์) MI = 1 (5M+4M) = M Meselve unbiased estimator AI (z) $V_{ar}(\bar{\chi}) = \frac{\sigma^2}{3}$, $V_{ar}(\bar{\Upsilon}) = \frac{\sigma^2}{4}$ (\mathbf{y}) $V_{ar}(f_{11}) = \frac{1}{7} \cdot \frac{f^2}{3} + \frac{4}{3} \cdot \frac{\sigma^2}{4} = \frac{4\sigma^2}{57}$ MIAL (2)4 02 6 37 02 so use Mi. BI (c) (1)TOTAL 7 Size of test = 1(X74 | b=3) MI 4(a) $= | - P(X \leq 4 | \lambda = 3) = | - 0.8153$ A١ aurt 0.185 AI = 0.1847(3) r= 1-0.6288 = 03712 = 0.37 (201) **B** 1 (b) S= 1-0.2851 = 0.7149 = 0.71 (2dx) 81 (2) When X=4; Power=0.27 < 0.5 (-) Protectility of varing to unreal underion is less than porkalility of coming to wormy conclusion BI NSt suitable. (1)TOTAL 6

6686/01 Statistics S4 January Advanced Level in GCE Mathematics

	•		
<i>.</i>	5(4)	d = U - C, $2, -4, 18, 16, 0, 15, 9$	MI
		$\mathbf{A} = 55 = 8$	BI
		$s_1^2 = 906 - 7 x \delta^2 = 76\frac{1}{3}$	NIAI
		H_{0} : $N_{4}=0$, H_{1} : $M_{4}\neq0$	BI
		$t = \frac{8}{2.42260}$ and $t = 2.42260$	MIAI
		$\sqrt{\frac{76\cdot 3}{7}}$ $t_{s}(2\cdot 5\%) = 2\cdot 447$	BI
		Insufficient envidence to rejete Ho. No endence of a difference lectureous the view amount	AI
	(1)	of corroton on conted and uncostal jupes.	(٩) 91 - 19
	(1) ເຈັ	Pifferences are normally distributed	BI (1) B) ;
		L (Ser) = 1.943 There is evidence to react the	()) 81
	(C)	These Isenddure to suggest that there is a greater arrent on created figes.	B1 (2)
	6 (a)	$G_{I} = \frac{1}{16} \left(2.74050 - \left(\frac{2.340}{2} \right)^{2} \right) = 14.2$	MI
		$f_0 = \frac{1}{36} \left(\frac{645252}{645252} - \frac{(4844)^2}{37} = 165 + A6 + y_0 + R + \frac{1}{37} $	HI (2)
	()	$S_1 = 19x(42+3)(x)(65) = 15.705 = 3.963$	NIAI
		Mean outside = $\frac{2345}{77}$ = 117, New Zuside = 132	BIBI
		confidera limito = (132-117) = 2.000+AS.932 (20-37	MAIS
		= (12.8, 17-2)	AIAI (S)
	(1)	O lies outsiden anfidence internet. The many are different.	BIBI (2)
			T=74L 12

en al de la constante de la co La constante de la constante de

7(1)
$$S_{A}^{z} = 5 \cdot 11$$
, $S_{B}^{z} = 5 \cdot 14$
Hand $S_{A}^{z} = G_{B}^{z}$, H.: $S_{A}^{z} \neq G_{B}^{z}$
Citical Value $F_{6,8} = 3 \cdot 58$
 $S_{A}^{z} = 1 \cdot 0 \circ 62112 \dots$
No avidence to react Ho. The variances are equal.
(1) $S_{1}^{z} = \frac{5 \times 5 \cdot 14 + 6 \times 5 \cdot 11}{9 + 7 \cdot 2} = 5 \cdot 1247$ a with 5 \ 12
Ha = 14 \cdot 11 \dots, My = 11.857 \dots
Ho: $M_{A} = M_{B}$, H.: $M_{A} > M_{B}$
(1) $T_{A} = 14 \cdot 11 \dots$, My = 11.857 \dots
Ho: $M_{A} = M_{B}$, H.: $M_{A} > M_{B}$
(2) $T_{A} = 14 \cdot 11 \dots 11.857 \dots$
Ho: $T_{A} = M_{B}$, H.: $M_{A} > M_{B}$
(3) Grangs indicate to reach Ho.
(4) $G_{A} = 0$ variances are a cardition for the test in (with b)
(5) $S_{1} = 0$ and a bility
(6) S_{1} and $S_{1} = 0$
(7) $S_{1} = 14 \cdot 11 \dots 11.857 \dots$
(8) $S_{1} = 0$
(9) $S_{1} = 0$
(1) $S_{1} = 0$
(2) E_{1} variances are a cardition for the test in (with b)
(3) $G_{A} = 0$ and a bility
(4) $S_{1} = 0$
(5) $S_{1} = 0$
(5) $S_{1} = 0$
(6) $S_{1} = 0$
(7) $S_{1} = 0$
(8) $S_{1} = 0$
(9) $S_{1} = 0$
(9) $S_{1} = 0$
(9) $S_{1} = 0$
(1) $S_{1} = 0$
(1) $S_{1} = 0$
(2) $S_{1} = 0$
(3) $S_{1} = 0$
(4) $S_{1} = 0$
(5) $S_{1} = 0$
(6) $S_{1} = 0$
(7) $S_{1} = 0$
(7) $S_{1} = 0$
(7) $S_{1} = 0$
(7) $S_{1} = 0$
(8) $S_{1} = 0$
(8) $S_{1} = 0$
(9) $S_{1} = 0$
(9)

June 2006 6686 Statistics S4 Mark Scheme

Question	Scheme	Marks
1.	Ho: 11= 1012 H, : 11 = 1012 both	BI
	$\bar{z} = \frac{13700}{14} \left(= 978.57 \right)$	nı
	$S_{x}^{2} = \frac{13448750 - 1452^{2}}{13} (= 3255.49) (S_{x} = 57.056) S^{2} = S$	MI
	$t_{13} = \frac{32 - \mu}{51 \pi} = \frac{978.6 - 1012}{57.04} = -2.19$ Awer - 2.19	
	(1) tis (5%) 2tail C.V. = - 2.160 significant roult - there is evidence of a change in man weight of squind (condense decrease) must mention weight	AIJ (F)
2.	(a) $\left(\bar{x} = \frac{466}{4} = 116.5\right)$ $S_{x^2} = \frac{54386}{3} - 4\bar{x}^2$, $= \frac{32.3}{3} = \frac{97}{3}$	NI, AI ,
	$0.216 < \frac{3}{5^2} \le 9.348$	BI HI BI
	10.376 < 52 < 449.07 AWRT 10.4,449	AI, AI (7)
	(b) Ho: $G_{H}^{2} = G_{S}^{2}$ $H_{1}: G_{H}^{2} > G_{S}^{2}$ both	ßı
	$\frac{S_{N}^{2}}{S_{s}^{2}} = \frac{318.8}{31.3} = 9.851$ AWRT 9.86	MI AI
. s	F6.3 (17. c.v.) = 27.91	61
	9.15 < 27.91, Insufficient evidence of an increase in variance to say on 2>0,2 iok. Variance can be assumed to be the same is ok	AIJ (5) 12
(6)	NB. 32.j = 0.101 onlygets MIAI if appropriate Fundre attempted	

Marks Scheme Question ßо MI=Miete is Number <u>گرگ</u> B=0 60 (D = Without Solar heating - with solar heating) 60 3. D=0 370 BI o< هىر: H (a) Ho: Jug = 0 (Attempt d.) MI d: 6,-3,7,-2,-8,6,5,11.5 $\vec{d} = 3$, $Sd = 6 \left(= \int \frac{369 - 9 \times 3^2}{8} \right) \left(\frac{2d}{9} M_1 \right)$, M_1 , M_1 , $t_8 = \frac{3-0}{5} = 1.5$ MIAI cao (t)ßı to (5% Itail C.v.) = 1.860 øf Not significant - insufficient evidence (that solar heating has) decreated ALT. (8) weekly Fuel concumption. (6) Difference in weekly fuel consumption is normally distributed. ß١ (1)প 4. (a) (Ho: $\delta_{A^{2}} = \delta_{a^{2}}^{2}$ H: $\delta_{A^{2}} \neq \delta_{a^{2}}^{2}$) $\frac{S_{A}^{2}}{S_{g}^{2}} = \frac{0.721^{2}}{0.572^{2}} = [.52P...$ NI AI AWRT 1.59 $F_{8,9}$ (5%) C.V. [= 10% 2kmi] = 3.23 Not significant, can assume variances are equal. (accept $\sigma_{A^2} = \sigma_{B^2}$) BI B1 cao(4) 0-417--- $Sp^2 = \frac{8 \times 0.721^2 + 9 \times 0.572^2}{8+9} = 0.41784...$ - Awerous HI AI (6) E17 (2-52) cv. = 2-110 BI MI 95% CI = 76-74 ± 2.110 × Spx 1 + 1 A.J = 0.02 ± 2.110 × 0.417 ... × + + to = (-0.6066... , 0.6466...) Awer (-0.607,0.647) A1, A1 (7) ± 0.7 is outside internal (c) manager need not be concerned (dep) Bir (allow J if 0.7 inside) (z) (13)

		M.]
5 (4)	$X_{i} = n_{0}$ of defects in 15 m . $X_{i} \sim P_{0}(4.5)$ where $F_{0}(4.5)$	A1 (2)
	Size = $P(X, >q) = 1 - P(X \leq g) = 1 - 0.9517 = 0.0403 (Hora)$	
(4)	$r = P(X_2 > 9 X_2 P_0(9)) = 1 - P(X_2 \le 8) = 1 - 0.4557 = 0.54(43)$	NI, AI (2)
6	Y. = no. of defects in 10m Y. ~ Po(3) Useof Po(3) to find P(Y)	MI
(-)	Pennie smallet a sothat P(Yi)c) <0.10 Tables Yill6	Al (2)
	P(X, X, G) = 1 - P(X, SS) = 1 - 0.9161 = 0.0839	BI (1)
(a)	Sige = 1(1170) = 1 (0) Sige = 0.8088 (Autro-8)	HI. AI (2)
(e)	$s = [-P(Y_2 \leq 5 Y_1 \sim I_0(8))], = [201112] = 0.0001 (0)$	(4). (J)
(+)	See graph	
(g)	(i) 0.62~0.67 (ii) Test is more powerful	51 '51 (C)
(h)	Test 2 has higher P(Type I error) but cost of this is low	BI Tot2
	Test 2 is more powerful for 2<0.7 and 2>0.7 is rare	
6. (a)	$E(x^{n}) = \int_{0}^{t} x^{n} \frac{1}{t} dx = \left[\frac{x^{n+1}}{t^{(n+1)}}\right]_{0}^{t} = \left(\frac{t^{n+1}}{t^{(n+1)}} - 0\right) = \frac{t^{n}}{\frac{n+1}{t}} \qquad \int_{0}^{t} \frac{1}{t^{n}} dx$	HI Alsie HI (3)
	$(-, -) = F(x)F(x) = k \cdot t^{2}$	MI, AI
(6)	$(E(x) = \frac{E}{2}) \frac{E(s) = KE(n/E(s))}{h}$	A) (3)
	$E(s) = t^2 \qquad \Longrightarrow \qquad \underbrace{R = 4}_{r = 1}$	н
(c)	$V_{ar}(xY) = E(x^{2}) E(Y^{2}) - [E(x^{2})]$	MI
	$= \frac{1}{3} \times \frac{1}{3} - (\frac{1}{4}) - \frac{1}{144} = \frac{1}{4}$ Var(s) = k ² Var(xy) = $\frac{16 \times \frac{7t^4}{144}}{144} = \frac{7}{4}$	Al (20 (3)
(d)	$E(u) = t^{2} \Rightarrow \chi E(x^{2})q = t^{2}, \Rightarrow \chi \frac{t^{2}}{3}q = t^{2}, \Rightarrow q = \frac{3}{2}$	MI, MI, AI cio (3)
(0)	$V_{cr}(w) = q_{1}^{2} \left[V_{cr}(x^{2}) + V_{cr}(y^{2}) \right] = 2q^{2} V_{cr}(x^{2})$	н
(0)	$V_{m}(x^{2}) = E(x^{4}) - [E(x^{2})]^{2} = \frac{E^{4}}{4} - (\frac{E^{2}}{4})^{2} = (\frac{4}{4}t^{4})$	м
	$V_{4}(u) = 2 \times 9 \times 4 t^4 = \frac{2}{5} t^4$	A1 (3)
		B15 (1)
(f)	5 q Un vetter amather variance	BLF (U)
(9)	Using u estimate is: $\frac{1}{2}(2^{1}+3^{2}) = \frac{1}{2}\times 13 = \frac{1}{2}$ or M.5	17

Mark Scheme (Final) Summer 2007

GCE

GCE Mathematics (6686/01)

edexcel

June 2007 6686 Statistics S4 Mark Scheme

Question Number	Scheme		
1. a	d: 14 2 18 25 0 -8 4 4 12 20		
	$\overline{d} = \pm 9.1$ sd = $\sqrt{106.7} = 10.332$ ($\sum d = 91$, $\sum x^2 = 1789$)	A1 A1	
	$\mathbf{H}_0: \boldsymbol{\mu}_{\mathrm{d}} = 0 \qquad \mathbf{H}_1: \boldsymbol{\mu}_{\mathrm{d}} \neq 0$	B1	
	$t = \pm \frac{9.1\sqrt{10}}{10.332} = \pm 2.785$ awrt ± 2.78 or 2.79	M1 A1	
	Critical value $t_9 = \pm 1.833$	B1	
	Significant. There is a difference between <u>blood pressure</u> measured by arm cuff and finger monitor.	A1 (8)	
b.	The <u>difference in measurements</u> of blood pressure is <u>normally</u> distributed	B1 (1)	
	Notes. (a) One tail test Loses the first B1 . CV is 1.383 in this case. Can get 7/8 (b) looking for the difference in measurements. Not just it is normally distributed.		

Question Number	Scheme		Marks
2. a)	$E(\overline{X}) = \mu$	B1	
	$\operatorname{Var}\left(\overline{X}\right) = \operatorname{Var}\left(\frac{X_1 + X_2 + X_3 + \dots + X_n}{n}\right)$	B1	
	$=$ $\frac{1}{n}$	21	
b)	$\mathbf{E}(U) = \frac{1}{n+m} \left(n \mathbf{E}(\overline{\mathbf{X}}) + m \mathbf{E}(\overline{\mathbf{Y}}) \right)$	M1	(2)
	$= \frac{1}{n+m}(n\mu+m\mu)$	A1	
	$=\mu \implies U$ is unbiased state unbiased	A1	(3)
c)	$\operatorname{Var}(\overline{Y}) = \frac{\sigma^2}{m}$	B1	(3)
	$\operatorname{Var}\left(U\right) = \frac{n^{2}\operatorname{Var}(\overline{X}) + m^{2}\operatorname{Var}(\overline{Y})}{\left(n+m\right)^{2}}$	M1	
	$=\frac{n^2\frac{\sigma^2}{n}+m^2\frac{\sigma^2}{m}}{(n+m)^2}$	A1	
	$= \frac{n\sigma^2 + m\sigma^2}{(n+m)^2}$		
	$=$ $\frac{\sigma^2}{2}$ * cso	A1	
	n+m		(4)
d)	$\frac{n\overline{X} + m\overline{Y}}{m\overline{Y}}$ is a better estimate since variance is smaller.	B1 F	31
	n + m		(2)

Question Number	Scheme	Mar	ks
3. а	$\mathbf{H}_0: \boldsymbol{\sigma}^2_{\mathbf{F}} = \boldsymbol{\sigma}^2_{\mathbf{M}} \qquad \mathbf{H}_1: \boldsymbol{\sigma}^2_{\mathbf{F}} \neq \boldsymbol{\sigma}^2_{\mathbf{M}}$	B1	
	$s_{\rm F}^2 = \frac{1}{6}(17956.5 - 7 \times 50.6^2) = \frac{33.98}{6} = 5.66333$ $s_{\rm M}^2 = \frac{1}{9}(28335.1 - 10 \times 53.2^2) = \frac{32.7}{9} = 3.63333$	B1 B1	
	$\frac{s^2_{\rm F}}{s^2_{\rm M}} = 1.5587$ (Reciprocal 0.6415)	M1 A1	
	$F_{6,9} = 3.37 \text{ (or } 0.24\text{)}$	B1	
	Not in critical region. <u>Variances</u> of the two distributions are the same	A1	(7)
b.	$\mathbf{H}_0: \boldsymbol{\mu}_{\mathrm{F}} = \boldsymbol{\mu}_{\mathrm{M}} \qquad \mathbf{H}_1: \boldsymbol{\mu}_{\mathrm{F}} < \boldsymbol{\mu}_{\mathrm{M}}$	B1	
	Pooled estimate $s^2 = \frac{6 \times 5.66333 + 9 \times 3.63333}{15}$	M1	
	= 4.44533		
	s = 2.11		
	$t = \frac{50.6 - 53.2}{2.11\sqrt{\frac{1}{7} + \frac{1}{10}}} = \pm 2.50$	M1 A1	
	C.V. $t_{15}(5\%) = \pm 1.753$	B1	
	Significant. The mean length of the <u>females forewing</u> is less than the length of the males forewing	A1	
			(6)
	Notes		
	(a) need to have <u>variance</u> and <u>the same</u> o.e(b) need female and forewing(wing)		

Question Number	Scheme	Marks
4.a)	$H_{0:}\sigma^2 = 0.9$ $H_{1:}\sigma^2 \neq 0.9$	B1
	v = 19	
	CR (Lower tail 10.117) Upper tail 30.144	B1 B1
	Test statistic = $\frac{19 \times 1.5}{0.9}$ = 31.6666, significant	M1 A1
	There is sufficient evidence that the <u>variance</u> of the length of spring is <u>different to</u> 0.9	A1 (6)
b)	$H_0: \mu = 100$ $H_1: \mu > 100$	(b) B1
	t ₁₉ =1.328	B1
	$t = \frac{100.6 - 100}{\sqrt{\frac{1.5}{20}}} = 2.19$	M1 A1 A1
	Significant. The mean <u>length of spring</u> is greater than 100	B1 (6)
	Notes (a) only need to see 30.144 need variance in conclusion (b) conclusion must be in context. Length of spring needed	

Question Number	Scheme		Marks
5.a)	Power = P (X \le 3 / λ) = $e^{-\lambda} + e^{-\lambda}\lambda + \frac{e^{-\lambda}\lambda^2}{2} + \frac{e^{-\lambda}\lambda^3}{6}$ = $\frac{e^{-\lambda}}{6}(6 + 6\lambda + 3\lambda^2 + \lambda^3)$ CP is X < 3	M1 A1 A1	(3)
0)	Size = $P[X \le 3 / \lambda = 7]$ = 0.0818	A1	(2)
c)	P(Type II error) = 1 - power = $1 - \frac{e^{-4}}{6}(6 + 6 \times 4 + 3 \times 4^2 + 4^3)$ = 0.5665	M1 A1	(2)
6.a)	$\frac{\overline{X} - 250}{\frac{4}{\sqrt{15}}} > 2.3263 \text{or} \frac{\overline{X} - 250}{\frac{4}{\sqrt{15}}} < -2.3263 \qquad \pm \\ 2.3262 \qquad \overline{X} > 252.40 \text{or} \ \overline{X} < 247.6 \qquad \text{awrt}$	B1 M1 A1	
b)	252 and 248 $P(\overline{X} < 252.4 / \mu = 254) - P(\overline{X} < 247.6 / \mu = 254) \qquad \text{using their '252.4' and '247.6}$ $= P\left(Z < \frac{252.4 - 254}{\frac{4}{\sqrt{15}}}\right) - P\left(Z < \frac{247.6 - 254}{\frac{4}{\sqrt{15}}}\right) \qquad \text{stand using } 4/\sqrt{15}, 254 \text{ their '252.4' or '247.6}$	M1 M1	(3)
	= P(Z < -1.5492) - P(Z < -6.20) -1.5492 and -6.20 o.e. = $(1 - 0.9394) - (1 - 1)$ = 0.0606	A1 M1 A1	(5)
	Notes (a) only needs to try and find one side for M1 (b) only need to see one of the standardisation for second M1 if consider only 252.4 and get 0.0606 they get M0 M1 A0 M1 A1 ie they can get 3/5		

Question Number	Scheme		Marl	ĸs
7.	$\overline{x} = 4.01$ s = 0.7992		B1 M1 A1	
(a)	$4.01 \pm t_9 (2.5\%) \frac{0.7992}{\sqrt{10}} = 4.01 \pm 2.262 \frac{0.7992}{\sqrt{10}}$	2.262	B1	
		their $\overline{\mathbf{x}}$ and s and $\sqrt{10}$	M1 A1√	
	= 4.5816 and 3.4383	awrt 4.58 and 3.44	A1	(7)
(b)	$2.700 < \frac{9 \times 0.7992^2}{s^2} < 19.023$	2.7,19.023	B1 B1	
		$9 \times s^2/\sigma^2$	M1	
	$\sigma^2 < 2.13, \sigma^2 > 0.302$	both awrt 2.13, 0.302	A1	(4)
(c)	P (X > 7) = P $\left(Z > \frac{7 - \mu}{\sigma} \right)$ needs to be as high as possible		M1	
	Therefore μ and σ must be as big as possible		M1	
	$= \mathbf{P}\left(\mathbf{Z} > \frac{7 - 4.581}{\sqrt{2.13}}\right)$		A1√	
	= 1 - 0.9515			
	= 0.0485			
	= 4.85%	4.8 to 4.9	A1	(4)
	Notes (a) $s^2 = 0.63877$ (c) M1 may be implied by them using their highest μ and σ .			

GCE Edexcel GCE Mathematics Statistics 4 (6686)

June 2008

Mark Scheme (Final)

advancing learning, changing lives

Mathematics

Edexcel GCE

June 2008 6686 Statistics S4 Mark Scheme

Question Number	Scheme			Marks
1 a	$E(\theta_{1}) = \frac{E(X_{3}) + E(X_{4}) + E(X_{5})}{2}$			
	$=\frac{3\mu}{3}$			D4
	$=\mu$	Bias = 0	allow unbiased	B1
	$E(\theta_2) = \frac{E(X_{10}) - E(X_1)}{3}$			
	$= 1/3(\mu - \mu)$ = 0	Bias = - μ	allow $\pm \mu$	B1,B1
	$E(\theta_3) = \frac{3E(X_1) + 2E(X_2)}{2E(X_2)} + 2E(X_2)$	$\frac{(X_2) + \mathrm{E}(X_{10})}{6}$		
	$=\frac{3\mu+2\mu+\mu}{6}$	Diag 0	allow unbiased	R1
	$\mu = \mu$	Blas = 0	allow unblased	(4)
b	$\operatorname{Var}(\theta_1) = \frac{1}{9} \{ (\operatorname{Var} X_2) \}$	2) + Var(X3) + Var((X4)}	M1
	$= \frac{1}{9} \{ \sigma^2 + \sigma^2 + \sigma^2 \}$ $= \frac{1}{3} \sigma^2$ $Var(\theta_2) = \frac{2}{9} \sigma^2$			
				A1
				B1
	$Var(\theta_3) = \frac{1}{36} \{9\sigma^2 + 4\sigma^2 + \sigma^2\}$			M1
	$= \frac{7}{18} \sigma^2$			A1
ci)	θ_1 is the better estimator. It has a lower var. and no bias			(5) B1 dopB1
ii)	$ heta_2$ is the worst estim	nator. It is biased		B1 depB1 (4)
		Marks		
--------------------	---	-----------		
Question Number	Scheme			
2 a	$H_1: \sigma_{A^2} = \sigma_{B^2} H_0: \sigma_{A^2} \neq \sigma_{B^2}$	B1		
	$S_A^2 = 22.5$ $s_B^2 = 21.6$ awrt	M1 A1A1		
	$\frac{s_1^2}{s_2^2} = 1.04$	M1 A1		
	$F_{(8, 6)} = 4.15$ 1.04 < 4.15 do not reject H ₀ . The variances are the same.	B1 B1		
b	Assume the samples are selected at random, (independent)	(8) B1		
с	$s_p^2 = \frac{8(22.5) + 6(21.62)}{14} = 22.12$ awrt 22.1	M1 A1		
	$H_0: \mu_A = \mu_B$ $H_1: \mu_A \neq \mu_B$	B1		
	$t = \frac{40.667 - 39.57}{\sqrt{22.12} \sqrt{\frac{1}{1} + \frac{1}{1}}}$	M1		
	$= 0.462 \qquad 0.42 - 0.47$	A1		
	Critical value = $t_{14}(2.5\%) = 2.145$	B1		
	0.462 < 2.145 No evidence to reject H_{0} . The means are the same	B1 (7)		
d	Music has no effect on performance	B1 (1)		

Question	Scheme	Marks
3	Differences 2.1 -0.7 2.6 -1.7 3.3 1.6 1.7 1.2 1.6 2.4 $\vec{d} = 1.41$	M1 M1
	$H_0: \mu_d = 0 H_1: \mu_d > 0$	B1
	$s = \sqrt{\frac{40.65 - 10 \times 1.41^2}{9}} = 1.5191$	M1
	$t = \frac{1.41}{\left(\frac{1.519}{\sqrt{10}}\right)} = 2.935$ awrt 2.94 /2.93	M1 A1
	<i>t</i> 9 (1%) = 2.821	B1
	2.935 > 2.821 Evidence to reject H ₀ . There has been an increase in the mean weight of the mice.	B1ft
		(8)

2 sample test can score M0 M0 B1 for H₀ : $\mu_A = \mu_B$ H₁ : $\mu_A < \mu_B$ M1 $\frac{9 \times 24.5 + 9 \times 17.16}{18}$ M0 A0 B1 2.552 B1 ft ie 4/8

Question Number	Scheme	Marks
4a	$\overline{x} = 668.125 \ s = 84.428$	M1 M1
	$T_7(5\%) = 1.895$	B1
	Confidence limits = 668.125 $\pm \frac{1.895 \times 84.428}{\sqrt{8}}$	M1
	= 611.6 and 724.7 Confidence interval = (612 , 725)	A1A1
b	Normal distribution	B1 (1)
С	£650 is within the confidence interval. No need to worry.	B1 √ B1 √ (2)

Question Number	Scheme	Marks
5 a		
	Confidence interval = $\left(\frac{15 \times 0.003}{27.488}, \frac{15 \times 0.003}{6.262}\right)$ = (0.00164, 0.00719)	M1 B1B1 A1 A1 (5)
b	0.07 ² =0.0049 0.0049 is within the 95% confidence interval. There is no evidence to reject the idea that the standard deviation of the volumes is not 0.07 or The machine is working well.	M1 A1 A1 (3)

Question Number	Scheme	
6 a	$H_0 p = 0.35$ $H_1 : p \neq 0.35$	B1 B1
b	Let X = Number cured then $X \sim B(20, 0.35)$	(2) B1
	$\alpha = P(Type \ I \ error) = P(x \le 3) + P(x \ge 11) \ given \ p = 0.35$ = 0.0444 + 0.0532	M1
	= 0.0976	A1 (0)
с	β = P(Type II error) = P(4 $\le x \le 10)$	(3) M1
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A1A1
d	Power = $1 - B$ 0.4120 0.1435	M1 A1
е	Not a good procedure. Better further away from 0.35 or This is not a very powerful test (power = 1 - β)	(2) B1 B1dep (2)

B1
B1√
51 B1
M1
A1
B1
(7) B1
(1)

Mark Scheme (Results) Summer 2009

GCE

GCE Mathematics (6686/01)

June 2009 6686 Statistics S4 Mark Scheme

Question Number	Scheme	Marks
Q1	H ₀ : $\mu = 5$; H ₁ : $\mu < 5$ both CR: $t_9(0.01) > 2.821$ $\overline{x} = 4.91$ $s^2 = \frac{1}{9} \left(241.2 - \frac{49.1^2}{10} \right) = 0.0132222$ s= awrt 0.115 $t = \frac{ 4.91-5 }{\sqrt{0.013222}} = \pm 2.475$ 2.47 - 2.48 Since 2.475 is not in the critical region there is insufficient evidence to reject H ₀ and conclude that the mean diameter of the bolts is not less than (not equal to) 5mm.	B1 B1 M1 A1 M1 A1 A1ft [8]

Ques Num	stion ber	Scheme	Mar	ks
Q2	(a)	The differences are normally distributed	B1	(1)
	(b)	The data is collected in pairs or small sample size and variance unknown or samples not independent	B1	(1)
	(c)	<i>d</i> : 2.5, 1.6, 1.6, -1.9, -0.6, 4.5 at least 2 correct	M1	
		$(\Sigma d = 7.7, \Sigma d^2 = 35.59)$ $\overline{d} = \pm 1.2833, \text{ sd} = 2.2675.$ (Var = 5.141)	A1, A1	
		H ₀ : $\mu_d = 0$, H ₁ : $\mu_d > 0$ (H ₁ : $\mu_d < 0$ if d - 2.5, -1.6, -1.6 etc) both depend on their d's	B1	
		$t = \frac{\pm 1.2833\sqrt{6}}{2.2675} = \pm 1.386$ formula and substitution, 1.38 – 1.39	M1, A1	
		Critical value $t_5(5\%) = 2.015$ (1 tail)	B1	
		Not significant. Insufficient evidence to support that the device reduces CO ₂ emissions.	A1 ft	(8)
	(d)	The idea that the device reduces CO_2 emissions has been rejected when in fact it does reduce emissions. OR	B1 B1	
		Concluding that the device does not reduce emissions when in fact it does (if not in context can get B1 only)		(2)
				[12]
		 (b) Allow because the same car has been used (c) awrt ± 1.28, 2.27 		

Question Number	Scheme	Mar	ks
3 (a)	Size is the probability of H_0 being rejected when it is in fact true. or P(reject H_0/H_0 is true) oe	B1	(1)
(b)	The power of the test is the probability of rejecting H_0 when H_1 is true. or P(rejecting H_0/H_1 is true) / P(rejecting H_0/H_0 is false) oe	B1	(1)
(c)	$X \sim B(12, 0.5)$ P($X \le 2$) = 0.0193	B1 M1	
(d)(i)	P(X ≥ 10) = 0.0193 ∴ critical region is { $X \le 2 \cup X \ge 10$ }	A1A1	(4)
	P(Type II error) = P($3 \le X \le 9 p = 0.4$) = P($X \le 9$) - P($X \le 2$) = 0.9972 -0.0834	M1 M1dep	
(ii) (e)	= 0.9138 Power = 1 - 0. 9138 = 0.0862	AI B1 ft	(4)
	Increase the sample size Increase the significance level/larger critical region	B1 B1	(4)
Notes			[12]
Notes	 (d) (i) first M1 for either correct area or follow through from their critical region 2nd M1 dependent on them having the first M1. for finding their area correctly A1 cao (ii) B1 follow through from their (i) 		

Question Number	Scheme	Marks
Q4 (a)	$\mathbf{H}_0: \boldsymbol{\sigma}_A^2 = \boldsymbol{\sigma}_B^2, \ \mathbf{H}_1: \boldsymbol{\sigma}_A^2 \neq \boldsymbol{\sigma}_B^2$	B1
	critical values $F_{12,8} = 3.28$ and $\frac{1}{F_{8,12}} = 0.35$	B1
	$\frac{s_B^2}{s_A^2} = 2.40 \ \left(\frac{s_A^2}{s_B^2} = 0.416\right)$	M1A1
	Since 2.40 (0.416) is not in the critical region we accept H_0 and conclude there is no evidence that the two variances are different.	A1ft
(b)		(3)
	$S_p^2 = \frac{8 \times 1.02 + 12 \times 2.45}{20}$	M1
	= 1.878	A1
	$(27.94 - 25.54) \pm 2.086 \times \sqrt{1.878} \times \sqrt{\frac{1}{9} + \frac{1}{13}}$	B1M1 A1ft
	(1.16, 3.64)	A1 A1 (7)
(c)	To calculate the confidence interval the variances need to be equal. In part (a) the test showed they are equal.	B1 B1
		(2)
		[14]

Question Number	Scheme	Marks
Q5 (a)	95% confidence interval for μ is $560 \pm t_{14}(2.5\%)\sqrt{\frac{25.2}{15}} = 560 \pm 2.145\sqrt{\frac{25.2}{15}} = (557.2, 562.8)$ 2.145	B1 M1 A1 A1 (4)
(b)	95% confidence interval for σ^2 is $5.629 < \frac{14 \times 25.2}{\sigma^2} < 26.119$ $\sigma^2 < 62.675 \ \sigma^2 > 13.507$ $13.507 < \sigma^2 < 62.675$ awrt 13.5, 62.7	B1, M1, B1 A1, A1 (5)
(c)	Require $P(X > 565) = P\left(Z > \frac{565 - \mu}{\sigma}\right)$ to be as large as possible OR $\frac{565 - \mu}{\sigma}$ to be as small as possible; both imply highest σ and μ . $\frac{565 - 562.8}{\sqrt{62.675}} = 0.28$ P(Z > 0.28) = 1 - 0.6103 = 0.3897 awrt $0.39 - 0.40(c) M1 for using their largest \sigma and \muM1 for using \frac{x - \mu}{\sigma}M1 1 - their prob$	(3) M1 M1 A1 (5) [14]

Ques Num	tion ber	Scheme	Marks	6
Q6	(a)	$E(\frac{2}{3}X_1 + \frac{1}{2}X_2 + \frac{5}{6}X_3) = \frac{2}{3} \times \frac{k}{2} + \frac{1}{2} \times \frac{k}{2} + \frac{5}{6} \times \frac{k}{2} = k$ $E(X_1 + X_2 + X_3) = k \implies \text{unbiased}$	M1 A1 B1	(3)
	(b)	$E(aX_1 + bX_2) = a\frac{k}{2} + b\frac{k}{2} = k$ $a + b = 2$	M1 A1	
		$Var(aX_1 + bX_2) = a^2 \frac{k^2}{12} + b^2 \frac{k^2}{12}$	M1A1	
		$=a^{2}\frac{k^{2}}{12}+(2-a)^{2}\frac{k^{2}}{12}$	M1	
		$=(2a^2-4a+4)\frac{k^2}{12}$		
	(c)	$= (a^2 - 2a + 2)\frac{k^2}{6}$ (*) since answer given	A1 cso	(6)
		Min value when $(2a-2)\frac{k^2}{6} = 0$ $\frac{d}{da}(Var) = 0$, all correct, condone missing $\frac{k^2}{6}$	M1A1	
		$\Rightarrow 2a - 2 = 0$ a = 1, b = 1.	A1A1	
		$\frac{d^2(Var)}{da^2} = \frac{2k^2}{6} > 0 \text{since } k^2 > 0 \text{ therefore it is a minimum}$	M1	
		min variance = $(1-2+2)\frac{k^2}{6}$		
		$=\frac{k^2}{6}$	B1	
		Alternative		(6)
		$\frac{k^2}{6}(a-1)^2 - \frac{k^2}{6} + \frac{2k^2}{6}$	M1 A1	
		$\frac{\frac{k}{6}(a-1)^2 + \frac{k}{6}}{\text{Min when }} \frac{k^2}{(a-1)^2} = 0$	ΝΙ I	
		6^{-1}		
		a = 1 v = 1 min var = $k^2/6$	B1	

Mark Scheme (Results) Summer 2010

GCE

GCE Statistics S4 (6686/01)

Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners. For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

Summer 2010 Publications Code UA024771 All the material in this publication is copyright © Edexcel Ltd 2010

June 2010 Statistics S4 6686 Mark Scheme

Question Number	Scheme	Marks
Q1 (a)	$H_0: \sigma_1^2 = \sigma_2^2, H_1: \sigma_1^2 \neq \sigma_2^2$	B1
	critical values $F_{6,7} = 3.87 \left(\frac{1}{F_{6,7}} = 0.258 \right)$	B1
	$\frac{s_2^2}{s_1^2} = \frac{5.2^2}{4.1^2}; = 1.61 \left(\frac{s_1^2}{s_2^2} = \frac{4.1^2}{5.2^2} = 0.622\right)$	M1; A1
	Since 1.61 (0.622) is not in the critical region we accept H_0 and conclude there is no evidence that the two variances are different	A1ft (5)
(b)	$Sp^{2} = \frac{7 \times 4.1^{2} + 6 \times 5.2^{2}}{7 + 6} = 21.53$	M1A1
	t_{13} =3.012	B1
	99% CI = $(17.9 - 15.9) \pm 3.012 \times \sqrt{21.53} \times \sqrt{\frac{1}{8} + \frac{1}{7}}$	M1A1ft
	$= \pm (9.23, -5.233), [or accept: [0,9.23] or [-9.23,0]]$ awrt 9.23, -5.23	A1A1 (7)
(c)	a person will be quicker at the task second time through/ times not independent/ familiar with the task/groups are not independent	B1 (1)
		[13]
	Notes B1 Allow $\sigma_1 = \sigma_2$ and $\sigma_1 \neq \sigma_2$ B1 must match their F $\frac{s_2^2}{s_1^2}$ or other way up A1 awrt 1.61(0.622) M1 A1 Sp ² may be seen in part a B1 3.012 only M1 for $(17.9 - 15.9) \pm t$ value $\times \sqrt{S_p^2} \times \sqrt{\frac{1}{8} + \frac{1}{7}}$ A1ft their Sp ² A1 awrt 9.23/-9.23 A1 awrt -5.23/5.23 (c) B1 any correct sensible comment	

Ques Num	tion ber	Scheme	Mark	<s< th=""></s<>
Q2	(a)	The differences in the mean heart rates are normally distributed.	B1	(1)
	(b)	D = standing up - lying down	l	
		$H_0: \mu_D = 5$ $H_1: \mu_D > 5$	B1	
		<i>d</i> : 9, 6, 4, 2, 8, 9, 3, 5, 7, 7	M1	
		$\overline{d} = 6$; $S_d = \sqrt{\frac{414 - 10 \times 36}{9}} = 2.45$	M1;M1	
		$t_9 = \frac{6-5}{2.45 / \sqrt{10}} = 1.29$	M1A1	
		$t_9(5\%) = 1.833$	B1	
		insignificant. There is no evidence to suggest that heart rate rises by more than 5 beats when standing up.	A1 ft (8)	
			1	[9]
		Notes	l	
		must have "The differences in (mean heart rate) are normally distributed) B1 both correct allow $\mu_{\rm D}$ -5 >0 ($\mu_{\rm D}$ = -5 H ₁ : $\mu_{\rm D}$ < -5) M1 finding differences		
		M1 finding \overline{d}	1	
		$\frac{1}{\sum d^2 - 10 \times (\overline{d})^2}$	l	
		$M1 \sqrt{\frac{9}{9}}$ o.e	l	
		$\pm \left(\frac{6-5}{\frac{s_d}{\sqrt{10}}}\right)$ need to see full expression with numbers in		
		A1 awrt ± 1.29 .	l	
		B1 \pm 1.833 only A1 ft their CV and t. Need context. Heart rate and 5 beats	l	

Question Number	Scheme	Mark	<s< th=""></s<>
Q3 (a)	$X \sim B(5, p)$		
	Size = P(reject $H_0 / p = 0.05$)		
	= P(X > 1/p = 0.05)		
	= 1 - 0.9774	M1	
	= 0.0226	A1	(2)
(b)	$\mathbf{P}_{ower} = 1$ $\mathbf{P}(0)$ $\mathbf{P}(1)$	M1	
	1 over = 1 - 1 (0) - 1 (1)		
	$= 1 - (1 - p)^{3} - 5(1 - p)^{2}p$	M1	
	$= 1 - (1 - p)^{+} (1 - p + 5p)$	A 1	
	$= 1 - (1 - p)^{+}(1 + 4p)$	ATCSO	(2)
	V P(10, m)		(3)
(0)	$I \sim B(10, p)$ P (Type Lerror) = P($V > 2/p = 0.05$)	М1	
	-1 = 0.9885		
	- 0.0115	A1	(2)
	- 0.0115		
(d)	s = 0.18	B1	(1)
(e)	0.5		
	0.4	B1ft	
	0.1		
			(1)
	n 0.00 0.1 0.15 0.2 0.25 0.3		

Question Number	Scheme	Ма	rks
(f)	i intersection $0.12 - 0.13$ "their graphs intersection"	B1ft	
	ii if $p > 0.12$ the deputy's test is more powerful.	B1	(2)
(g)	More powerful for $p < 0.12$ and p unlikely to be above 0.12		
	Allow it would cost more/take longer/more to sample	B1	(1) [12]
	Notes (a) M1 for finding P (X>1) A1 awrt 0.0226 (b) M1 for $1-P(0) - P(1)$ M1 for $1 - (1 - p)^5 - 5(1 - p)^4 p$ A1 cso (a) M1 for finding P(Y > 2) A1 awrt0.0115 (b) B1 0.18 cao (c) B1 graph. ft their value of s (d) B1 ft their intersection. B1 deputy test more powerful o.e. (e) If give first statement they must suggest p unlikely to be above 0.12		

Q4 (a) $\bar{x} = \frac{291}{15} = 19.4$ $s = \sqrt{\frac{5968 - 15\bar{x}^2}{14}} = 4.800$ M1M1 i $t_{14} = 2.145$ B1 95% CI = $19.4 \pm 2.145 \times \frac{4.800}{\sqrt{15}}$ A1ft = $(16.7, 22.1)$ A1A1 ii 95% CI is given by $\frac{14 \times 4.800^2}{26.119} < \sigma^2 < \frac{14 \times 4.800^2}{5.629}$ A1A1 (12)	Question Number	Scheme	Mar	ŕks
i $t_{14} = 2.145$ B1 95% CI = 19.4 ± 2.145 × $\frac{4.800}{\sqrt{15}}$ M1 = (16.7, 22.1) A1A1 ii 95% CI is given by M1 $\frac{14 \times 4.800^2}{26.119} < \sigma^2 < \frac{14 \times 4.800^2}{5.629}$ M1 (12.4, 57.3) accept 12.3	Q4 (a)	$\overline{x} = \frac{291}{15} = 19.4$ $s = \sqrt{\frac{5968 - 15\overline{x}^2}{14}} = 4.800$	M1M1	
95% CI = $19.4 \pm 2.145 \times \frac{4.800}{\sqrt{15}}$ = (16.7, 22.1) ii 95% CI is given by $\frac{14 \times 4.800^2}{26.119} < \sigma^2 < \frac{14 \times 4.800^2}{5.629}$ (12.4, 57.3) ANN ATA1 M1 A1A1 B1B1 ATA1 B1B1 ATA1 B1B1 ATA1 B1B1 ATA1 ATA1 B1B1 ATA1		$i t_{14} = 2.145$	B1	
= (16.7, 22.1) ii 95% CI is given by $\frac{14 \times 4.800^2}{26.119} < \sigma^2 < \frac{14 \times 4.800^2}{5.629}$ (12.4, 57.3) accept 12.3 A1A1 (12)		95% CI = $19.4 \pm 2.145 \times \frac{4.800}{\sqrt{15}}$	M1 A1ft	
ii 95% CI is given by $\frac{14 \times 4.800^2}{26.119} < \sigma^2 < \frac{14 \times 4.800^2}{5.629}$ M1 (12.4, 57.3) accept 12.3 A1A1 (12)		= (16.7, 22.1)	A1A1	
$\frac{14 \times 4.800^{2}}{26.119} < \sigma^{2} < \frac{14 \times 4.800^{2}}{5.629}$ (12.4, 57.3) accept 12.3 A1A1 (12)		ii 95% CI is given by		
(12.4, 57.3) accept 12.3 A1A1 (12)		$\frac{14 \times 4.800^2}{26.119} < \sigma^2 < \frac{14 \times 4.800^2}{5.629}$	M1 B1B1	
		(12.4, 57.3) accept 12.3	A1A1	(12)
(b) Require P(X>23) = P $\left(Z > \frac{23 - \mu}{\sigma}\right)$ to be as large as possible OR $\frac{23 - \mu}{\sigma}$ to be as	(b)	Require P(X > 23) = P $\left(Z > \frac{23 - \mu}{\sigma}\right)$ to be as large as possible OR $\frac{23 - \mu}{\sigma}$ to be as		
small as possible; both imply highest σ and μ . $\frac{23-22.1}{\sqrt{57.3}} = 0.124$ M1M1		small as possible; both imply highest σ and μ . $\frac{23-22.1}{\sqrt{57.3}} = 0.124$	M1M1	
P(Z > 0.124) = 1 - 0.5478 M1		P(Z > 0.124) = 1 - 0.5478	M1	
= 0.4522 A1 (4)		= 0.4522	A1	(4)
[16]				[16]
Notes		Notes		
(a)(i) M1 $\frac{291}{15}$		(a)(i) M1 $\frac{291}{15}$		
$M1\sqrt{\frac{5968-15\bar{x}^2}{14}}$		$M1\sqrt{\frac{5968-15\overline{x}^2}{14}}$		
B1 2.145		B1 2.145		
M1 (19.4) ± t × $\frac{"their s"}{\sqrt{15}}$		M1 (19.4) ± t × $\frac{"theirs"}{\sqrt{15}}$		
A1ft 19.4 ± 2.145 × $\frac{"their s"}{\sqrt{15}}$		A1ft 19.4 ± 2.145 × $\frac{"their s"}{\sqrt{15}}$		
A1 awrt 16.7		A1 awrt 16.7		
AI awrt 22.1 $14 \times s^2$		A1 awft 22.1 $14 \times s^2$		
(ii) M1 $\frac{\chi^2}{\chi^2}$		(ii) M1 $\frac{\chi^2}{\chi^2}$		
B1 26.119		B1 26.119		
B1 5.629		B1 5.629		
A1 awrt12.4/12.5 A1 awrt 57.3		A1 awrt12.4/12.3 A1 awrt 57.3		
(b) M1 use of highest mean and sigma		(b) M1 use of highest mean and sigma		
M1 standardising using values of mean and sigma from intervals M1 finding $1 - P(z > \text{their value})$		M1 standardising using values of mean and sigma from intervals M1 finding $1 - P(z > \text{their value})$		
A1 awrt 0.45		A1 awrt 0.45		

Question Number	Scheme	Marks
Q5 (a)	$H_0: \mu = 70 \text{ [accept } \le 70\text{]}, H_1: \mu > 70$	B1
	$t = \frac{71.2 - 70}{3.4 / \sqrt{20}} = 1.58$	M1A1
	critical value $t_{19}(5\%) = 1.729$	B1
	not significant, insufficient evidence to confirm manufacturer's claim	A1 ft (5)
(b)	$H_0: \sigma^2 = 16, H_1: \sigma^2 \neq 16$	B1
	test statistic $\frac{(n-1)s^2}{\sigma^2}$ =, $\frac{219.64}{16}$ = 13.7	M1 A1
	critical values $\frac{\chi_{19}^2 (5\%) \text{ upper tail} = 32.852}{\chi_{19}^2 (5\%) \text{ lower tail} = 8.907} \text{ not significant}$	B1 B1
	Insufficient evidence to suggest that the variance of the miles per gallon of the panther is different from that of the Tiger.	A1ft (6)
		[11]
	Notes (a) B1 both hypotheses using μ M1 $\frac{71.2 - 70}{3.4/\sqrt{20}}$ A1 awrt 1.73 A1 correct conclusion ft their <i>t</i> value and CV (b) B1 both hypotheses and 16. accept $\sigma = 4$ and $\sigma \neq 4$ M1 $\frac{(19) \times 3.4^2}{16}$ allow $\frac{(19) \times 3.4^2}{4}$ A1 awrt 13.7 B1 32.852 B1 8.907 A1 correct contextual comment NB those who use $\sigma^2 = 4$ throughout can get B0 M1 A0B1 B1 A1	

Question Number	Scheme	Mar	ks
Q6 (a)	$X_{1} \sim \operatorname{Po}(3 \lambda)$ $X_{2} \sim \operatorname{Po}(7 \lambda)$ $X_{3} \sim \operatorname{Po}(10 \lambda)$	M1	
	$E(\hat{\lambda}) = k [E(X_1) + E(X_2) + E(X_3)]$ $= 20 \lambda k$	M1	
	$\hat{\lambda}$ unbiased therefore $20 \lambda k = \lambda$	M1	
	$k = \frac{1}{20}$	A1	(4)
(b)	Var $(\hat{\lambda}) = \frac{1}{20^2}$ Var $(X_1 + X_2 + X_3)$	M1	
	$= \frac{1}{20^2} (3 \lambda + 7 \lambda + 10 \lambda)$	M1	
	$=\frac{\lambda}{20}$	A1ft	(3)
(c)	$Y \sim \text{Po}(4 \lambda)$		
	$E\left(\frac{1}{4}\overline{Y}\right) = \frac{1}{4} \times 4\lambda = \lambda$ therefore unbiased	M1 A1	(2)
(d)	$\operatorname{Var}\left(\frac{1}{4}\overline{Y}\right) = \frac{1}{16} \times \frac{4\lambda}{n}$	M1 B1	
	$=\frac{\lambda}{4n}$	A1	(3)
(e)	$\left \frac{\lambda}{4n} < \frac{\lambda}{20} \right $	M1	
	n > 5 therefore $n = 6$	A1	(2) [14]

Question Number	Scheme	Marks
Q6	Notes	
	(a) M1 all 3 needed. Poisson and mean	
	M1 adding their means	
	M1 putting their $E(\hat{\lambda}) = \lambda$	
	Al cao	
	(b) M1 use of k^2 Var $(X_1 + X_2 + X_3)$	
	M1 using their means from part(a) as Variances and adding together	
	A1 cao	
	(c) M1 use of 4λ	
	A1 cso plus conclusion. Accept working out bias to $= 0$	
	(d) M1 $\frac{1}{16} \times \operatorname{Var}\overline{Y}$	
	B1 for $\operatorname{Var}\overline{Y} = \frac{4\lambda}{n}$	
	A1 cao	
	(e) M1 for $\operatorname{Var}\left(\frac{1}{4}\overline{Y}\right) < \operatorname{Var}\left(\hat{\lambda}\right)$	
	A1 n = 6	

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481

Email publications@linneydirect.com

Order Code UA024771 Summer 2010

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH

Mark Scheme (Results)

June 2011

GCE Statistics S4 (6686) Paper 1

ALWAYS LEARNING

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025 or visit our website at <u>www.edexcel.com</u>.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our **Ask The Expert** email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

June 2011 Publications Code UA028843 All the material in this publication is copyright © Edexcel Ltd 2011

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - B marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod benefit of doubt
- ft follow through
- the symbol will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- L The second mark is dependent on gaining the first mark

June 2011
Statistics S4 6686
Mark Scheme

Question Number	Scheme	Marks
1.	$P(F_{8,10} > 3.07) = 0.05$	
	So need $P(F_{10,8} > x) = 0.01$ so $x = 5.81$	B1
	So $a = \frac{1}{5.81} = 0.172$ awrt_0.172	B1
		2
2.	$s_p^2 = \frac{6s_x^2 + 3s_y^2}{9}$ (=192.03)	M1
	$1.735 < \frac{9s_p^2}{\sigma^2} < 23.589$	B1M1B1
	So 99% confidence interval is (73.26, 996.14) awrt (<u>73.3,</u> <u>996)</u>	A1 5
Notes:	1 st M1 for attempting s_p^2 1 st B1 for 1.735 (or better) 2 nd M1 for use of $\frac{9s_p^2}{\sigma^2}$, follow through their s_p^2 2 nd B1 for 23.589 (or better) A1 for both values correct to awrt 3 sf	5

Question Number	Scheme	Marks
3.	d = B - A : 1, 2, 3, -1, 3, -1, -2, 2	M1
	$\overline{d} = 0.875$	M1
	2 33-8×0.875 ² (2.8202)	M1
	$s_d = \frac{1}{7} = (3.8392)$	
	$\mathbf{H}_0: \boldsymbol{\mu}_d = 0 \qquad \mathbf{H}_1: \boldsymbol{\mu}_d > 0$	B1
	$t_7 = \frac{0.875}{s} = 1.263$ awrt <u>1.26</u>	M1A1
	$\frac{p}{\sqrt{8}}$	
	$t_7(10\%)$ one tail critical value is <u>1.415</u>	B1
	Not significant.	A 1
	There is insufficient evidence to support the claim of manufacturer B or machine B does not produce more juice (than machine A)	A1 8
	1^{st} M1 for attempting the ds	
	2^{nd} M1 for attempting \overline{d}	
	3^{rd} M1 for attempting s_d or s_d^2	
	4 th M1 for attempting the correct test statistic	
	3 rd A1 contextual statement only required.	
	Allow The juice provided by machine A is the same as by machine B	
	NB 2 sample test can score 3/8	
	M0 M0 $7 \times 0.27 + 7 \times 16.70$	
	M1 $\frac{7 \times 9.27 + 7 \times 10.79}{14}$	
	B1 for H_0 : $\mu_A = \mu_B$ H_1 : $\mu_A < \mu_B$	
	M0 A0	
	B1 1.345	
	AU	

Question	Scheme		Marks
Number			
4. (a)	[X = no. of incorrectly addressed letters. $X \sim B(40, 0.05)$] P(X > 3) = 1 - P(X ≤ 3), = 1 - 0.8619 = 0.1381 awrt <u>0.138</u>	M1, A1	(2)
(b)	P(Type II Error) = P($X \le 3 p = 0.10$) = 0.4231 awrt	M1 A1	(2)
(c)	Power = 1 - P(Type II error) so $s = 0.58$ (0.5769)	B1	(1)
(d)	$Y = \text{no. of incorrectly addressed letters in a sample of 15. } Y \sim B(15, 0.05)$ Size = $P(Y \ge 2) + P(Y = 1) \times P(Y \ge 2)$ = $[1 - 0.8290] \times [1 + 0.8290 - 0.4633]$ = 0.23353 awrt	M1 A1 A1	(3)
(e)	(use overlay)	B1B1	(2)
(f)	2^{nd} / consultants test is quicker (since it uses fewer letters) 2^{nd} / consult test is more powerful for $p < 0.125$ (and values greater than this should be unlikely)	B1 B1	(2) 12
Notes: (a)	M1 for 1- $P(X \le 3)$ and $X \sim B(40, 0.05)$		
(b) (c) (d) (e)	M1for a correct interpretation of P(Type II error)B1must be 2dpM1for a correct strategy 1^{st} A1for a correct numerical expression 1^{st} B1for correct points (accept \pm one 2mm square) 2^{nd} B1for curve		
(f)	1^{st} B1 for selecting 2^{nd} test 2^{nd} B1 for a suitable supporting reason eg more powerful for small values of p/p around 0.05		

Question	Scheme	Ма	rks
5.			
(a)	$s_x^2 = \frac{1559691 - 6 \times \left(\frac{3059}{6}\right)^2}{5} = 22.1666$	M1	
	$H_0: \sigma_x^2 = \sigma_y^2 H: \sigma_x^2 \neq \sigma_y^2$	B1	
	$\frac{{s_x}^2}{{s_y}^2} = 1.895$	M1	
	$F_{5,4} = 6.26$	B1	
	$\frac{{s_x}^2}{{s_y}^2} = 1.895$ awrt <u>1.90</u> and comment	A1	
	: not significant - variances of <u>weights</u> of the two <u>boxes</u> can be assumed		
			(5)
(b)	$\overline{x} = 509.833 \implies \overline{x} - \overline{y} = 5.03333$	M1	
	$s_p^2 = \frac{5s_x^2 + 4s_y^2}{9} = 17.513$ awrt	M1A1	
	$\frac{17.5}{5\%}$ two tail <i>t</i> value is $t_9 = 1.833$	B1	
	90% confidence interval is $5.03\pm 1.833 \times \sqrt{17.513} \times \sqrt{\frac{1}{6} + \frac{1}{5}}$	M1	
	(0.388, 9.6782) awrt (0.388, 9.6782)	A1, A1	
			(7)
(c)	Zero is not in CI, there <u>is</u> evidence to <u>reject</u> the manufacturer's claim Or the weight of the contents of the boxes has changed.	B1ft, B1ft	(2) 14
Notos.			_
(a)	1 st M1 for use of the correct formula for s_x^2 with reasonable attempt at $\sum x^2$ and $\sum x$		
	2^{nd} M1 for use of the correct test statistic. Allow use of 3.42 instead of 3.42^2 . Top must be their variance.		
(b)	1 st M1 for attempting $\overline{x} - \overline{y}$ can follow through their \overline{x} 2 nd M1 for attempt to find pooled estimate of variance 3 rd M1 for use of correct formula for CI allow any <i>t</i> value and ft their \overline{x} and s_p		

Question	Scheme	N	larks
6.			
(a)	$E(Y^{m}) = \frac{n}{\beta^{n}} \int y^{m} \times y^{n-1} dy =, \left[\frac{n}{\beta^{n}} \times \frac{1}{m+n} \times y^{m+n}\right]_{0}^{\beta}$	M1, A1	
	$= \frac{n}{\beta^{n}} \times \frac{1}{m+n} \times \beta^{m+n} = \frac{n}{m+n} \beta^{m} (*)$	A1cso	
			(3)
(b)	$\mathrm{E}(Y) = \frac{n}{n+1}\beta$	B1	
			(1)
(c)	$E(Y^2) = \frac{n}{n+2}\beta^2$, $Var(Y) = E(Y^2) - [E(Y)]^2$	B1,M1	
	$\operatorname{Var}(Y) = \frac{n}{n+2}\beta^2 - \frac{n^2}{\left(n+1\right)^2}\beta^2 = \frac{n}{\left(n+1\right)^2\left(n+2\right)}\beta^2 (*)$	A1cso	
			(3)
(d)	As $n \to \infty E(Y) \to \beta$, $Var(Y) \to 0$ So <i>Y</i> is a consistent estimator for β .	M1,A1 A1	
			(3)
(e)	$k = \frac{n+1}{n}$	B1	(1)
			(1)
(f)	$\operatorname{Var}(M) = 4\operatorname{Var}(\overline{X}) = 4\frac{\sigma^2}{n} = \frac{4}{n} \times \frac{\beta^2}{12} = \frac{\beta^2}{3n}$	B1	
	$\frac{(n+1)^2}{n^2} \times \frac{n}{(n+1)^2(n+2)}\beta^2 = \frac{\beta^2}{n(n+2)} < \frac{\beta^2}{3n} \text{ so } S \text{ is better } (n>1)$	M1A1	
			(3)
(g)	Max = 9.1, $s = \frac{6}{5} \times 9.1 = \underline{10.9(2)}$	M1A1	
			(2) 16

Question Number	Scheme	Marks
Notes: (a)	M1 for attempt to integrate $y^m f(m)$ 1 st A1 for correct integration (limits not needed yet) 2 nd A1 for use of correct limits and proceeding to printed answer. No incorrect working seen.	
(c)	M1 for use of their $E(Y)$ and $E(Y^2)$ in a correct formula for $Var(Y)$	
(d)	M1 for examining both $E(Y)$ and $Var(Y)$ for $n \to \infty$ 1 st A1 for correct limits for both the above 2 nd A1 for a correct statement following correct working	
(f)	M1 for attempting Var(S)	
(g)	M1 for correct use of <i>S</i> to find estimate	
7. (a)	$s_x^{2} = \frac{214856 - 20 \times \left(\frac{2072}{20}\right)^2}{19} = 10.357$ awrt $\frac{10.4}{H_0: \sigma = 2.8 \text{ (or } \sigma^2 =) H_1: \sigma \neq 2.8 \text{ (or } \sigma^2 \neq)$ $\frac{(n-1)s^2}{\sigma^2} \sim \chi^2_{19} \text{test statistic} = 25.102$ awrt $\frac{25.1}{\chi^2_{19}(0.025)} = 32.852, \qquad \chi^2_{19}(0.975) = 8.907$ Not significant so no evidence of a change in standard deviation	B1 B1 M1A1 B1B1 A1
		(7)

Question Number	Scheme	Marks
(b) (i)	$H_0: \mu = 102.3$ $H_1: \mu \neq 102.3$	B1
	$z = \frac{\frac{2072}{20} - 102.3}{\frac{2.8}{\sqrt{20}}} = 2.0763$	M1A1
	aw aw	
	Critical value is $z = 1.96$ or awrt $0.019 < 0.025$	B1
	So a significant result, there is evidence of a change in mean length	A1ft
(ii)	$t = \frac{\frac{2072}{20} - 102.3}{\sqrt{\frac{10.357}{20}}} = 1.8064$	M1A1
	aw	
	rt <u>1.81</u> Critical value of $t_{19} = 2.093$	B1
	Not significant, there is insufficient evidence of a change in mean length	A1
		(9)
(c)	(a) suggests that σ is unchanged so can use $\sigma = 2.8$ so normal test can be used	B1ft
	So using (i) conclude that there is evidence of an increase in mean	B1ft
		(2) 18
Notes:		
(a) (b)	M1 for use of the correct test statistic 1^{st} and 2^{nd} M1 for use of correct test statistics	
	$1^{\text{st}} B1$ for reason for selecting (i) or (ii) based on their conclusion	
(c)	from test in (a).	
	$2^{n\alpha}$ B1 For a final conclusion about mean lengths based on their (a)	
	and (D) NB if both conclusions are the same it needs to be clear they have	
	chosen (i)	

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email publication.orders@edexcel.com Order Code UA028843 June 2011

For more information on Edexcel qualifications, please visit www.edexcel.com/guals

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

Mark Scheme (Results)

Summer 2012

GCE Statistics S4 (6686) Paper 1

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2012 Publications Code UA033143 All the material in this publication is copyright © Pearson Education Ltd 201

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

June 2012 6686 Statistics S4 Mark Scheme

Question Number	Scheme	Marks
1 (a)	$H_0: \mu_d = 0, H_1: \mu_d > 0 (\text{ or } H_1: \mu_d < 0)$	B1
	where μ_d is the (population) mean difference :- BP sitting down – BP standing. (BP standing – BP sitting down)	
	Assume the differences are normally distributed	B1
		(2)
(b)	<i>d</i> : 4, -1, 6, 6, 3, -2, 9, -1, 4, 7, -11, 7	M1
	$(\Sigma d = 31, \Sigma d^2 = 419)$ $\overline{d} = \pm 2.5833$; sd = 5.55073. (or Var = 30.8106)	A1; A1
	$t = \frac{\pm 2.5833\sqrt{12}}{5.55073} = \pm 1.612$ Formula and substitution, 1.61	M1, A1
	Critical value $t_{11}(1\%) = 2.718(1 \text{ tail})$	B1
	Not significant. Insufficient evidence to support that the blood pressure of a person	
	sitting down is more than the blood pressure of a person after standing up.	A1 ft
		(7) Total 9 marks
1a	Notes B1 both hypotheses. B1 must be differences	
1b	M1 at least 2 correct or may be implied by correct Σd or Σd^2 or \overline{d} or sd or var or implied to value A1 correct \overline{d} awrt ± 2.58 - may be implied by correct t value A1 correct sd awrt 5.55 or var awrt 30.8 - may be implied by correct t value M1 $\frac{\pm \text{their } \overline{d} \sqrt{12}}{\text{their sd}}$ A1 awrt 1.61 B1 CV A1ft follow through their t value – need context of blood pressure and sitting and sta	ed by correct

Question Number	Scheme	Marks
2 (a)	$S_F^2 = \frac{1}{5} \{2308.01 - 6 \times 19.6^2\} = 0.61$	B1
	$S_M^2 = \frac{1}{11} \{2262.57 - 12 \times 13.7^2\} = 0.93545$	B1
	H ₀ : $\mu_F = \mu_M + 5$; H ₁ : $\mu_F \neq \mu_M + 5$ both	B1
	CR: $t_{16}(0.025) > 2.120$ 2.12	B1
	$S_p^2 = \frac{5 \times 0.61 + 11 \times 0.93545}{16} = 0.83375$	M1 A1
	$t = \frac{19.6 - 13.7 - 5}{\sqrt{0.83375\left(\frac{1}{6} + \frac{1}{12}\right)}} = 1.971$	M1 A1ftA1
	Since 1.971 is not in the critical region we accept H_0 and conclude that the mean shell length of female turtles does exceed the shell length of male turtles by 5cm.(or	A1 ft
(b)(i)	$-1.96 < \frac{\overline{X}_{F} - \overline{X}_{M} - 5}{\sqrt{\left(\frac{0.9}{6} + \frac{0.9}{12}\right)}} < 1.96$	(10) B1 M1
	$4.07 < \overline{X}_F - \overline{X}_M < 5.93$	A1cso
(ii)	P(Type II error) = P(4.07 < $\overline{X}_F - \overline{X}_M < 5.93 \mid N(6, 0.225))$	M1
	$= P(\frac{4.07-6}{\sqrt{0.225}} < z < \frac{5.93-6}{\sqrt{0.225}})$	M1
	= 0.44 awrt 0.44	A1
		(6) Total 16 marks
2(a) (b) (c)	B1 – awrt 0.61 B1 – awrt 0.935 Both may be implied by correct <i>t</i> value or S _p B1 allow rearrangements eg $\mu_F - \mu_M = 5$. If <i>M</i> and <i>F</i> not used then they must make clear wh is. B1 CV (if using one tail test allow 1.746) M1 $\frac{5 \times \text{their 0.61+11} \times \text{their 0.93545}}{16}$ A1 awrt 0.834 M1 $\pm \left(\frac{19.6-13.7-5}{\sqrt{p(\frac{1}{6}+\frac{1}{12})}}\right)$ where <i>p</i> is either their 0.61 or 0.94 or their S_p^2 (awrt 0.834) (Allow 13.7 - 1) A1 ft their S_p^2 A1 awrt 1.97 B1 1.96 M1 must use z value M1 writing or using N(6, 0.225) M1 finding correct area and standardising (must use 6 but allow use of 0.9 and (0.9/18)	at each letter 19.6 - 5) for var)

Question Number	Scheme	Marks
3.	H ₀ : $\sigma_A^2 = \sigma_B^2$; H ₁ : $\sigma_A^2 \neq \sigma_B^2$	B1
	$S_A^2 / S_B^2 = \frac{225}{36} = 6.25 \left(\frac{36}{225} = 0.16\right)$	M1A1
	CR: $F_{10,8} > 3.35 \left(\frac{1}{F_{10,8}} = 0.299 \right)$	B1
	Since 6.25 is in the critical region we can assume that the lengths of paving slabs sold by the builders merchant differ in variability.	A1ft
		(5)
		Total
		5 marks
	B1 both correct. Must use σ . May use different notation to A and B	
	M1 $\frac{225}{36}$ or $\frac{36}{225}$ allow $\frac{15}{6}$ or $\frac{6}{15}$	
	A1 either 6.25 or 0.16	
	B1 CR must match their method	
	A1 context must include "lengths of slabs"	

Question Number	Scheme	Marks
4 (a)	$\overline{x} = 4.9$	B1
	$s = \sqrt{0.191}$ (0.437) (NB: $\Sigma x = 49$; $\Sigma x^2 = 241.82$)	B1
(i)	95% confidence interval is given by $4.9 \pm 2.262 \times \sqrt{\frac{0.191}{10}}$	M1A1ft B1
	i.e: (4.587, 5.212)	A1 A1
(ii)	95% confidence interval is given by $\frac{9 \times 0.437^{2}}{19.023} < \sigma^{2} < \frac{9 \times 0.437^{2}}{2.7} \qquad \text{use of } \frac{(n-1)s^{2}}{\chi^{2}_{n-1}}$	M1B1B1A1
(b)	 i.e; (0.0904, 0.63704) 5 lies inside the confidence interval 0.49(0.7²) lies inside the confidence interval Yes it does meet the time requirement 	A1 A1 (13) B1ft B1ft B1 ft (3)
		Total 16 marks

Question Number	Scheme	Marks
(a)	B1 B1 may be implied by correct a correct answer to (i) or (ii)	
(i)	M1 - "their 4.9" \pm t value $\times \sqrt{\frac{\text{their 0.191}}{10}}$	
	A1ft - "their 4.9" $\pm 2.262 \times \sqrt{\frac{\text{their } 0.191}{10}}$	
	B1 2.262	
	A1 either correct to 3sf or better or both correct to 2sf or better A1 both correct to 3sf or better	
(ii)	M1 – writing and attempting to use $\frac{(n-1)s^2}{\chi^2_{n-1}}$ or may be implied by correct formula	
	used with their 0.437	
	B1 19.023	
	B1 2.7 A1ft follow through their 0.437 and two chi squared values A1 either correct to 2sf or better A1 awrt (0.09, 0.637)	
(b)	For the second B1. If both 0.7 and 0.49 lie in interval they must state variance = 0.49 or the interval for standard deviation.	
	For the third B1 their must not be two conflicting conclusions unless they give just one overall as well.	

Question Number	Scheme	Marks
5.(a)	$H_0: \sigma^2 = 36; H_1: \sigma^2 > 36$	B1
	$v = 24, X_{24}^2 (0.05) = 36.415$	B1
	$\frac{(n-1)S^2}{\sigma^2} = \frac{24 \times 55}{36} = 36.67$	M1 A1
	Since $36.67 > 36.415$ there is sufficient evidence to reject H ₀ .	A1 ft
	There is evidence to suggest that the variance is greater than 36.	A1 ft
		(6)
(b)		
	$H_0: \mu = 450$ $H_1: \mu > 450$	B1
	<i>t</i> ₂₄ =1.711	B1
	$t = \pm \frac{455 - 450}{\sqrt{\frac{55}{25}}} = \pm 3.37$	M1 A1
	Significant; The <u>mean weight of chocolates is greater than 450,</u> Or <u>μ is more than 450</u>	A1ft; A1ft (6)
(c)	The weights are normally distributed	B1
		(1) Total 13 marks
	Notes	
(a)	B1 both correct. Also allow H_0 : $\sigma = 6$; H_1 : $\sigma > 6$ B1 36.415	
	M1 use of $\frac{(n-1)S^2}{2}$	
	A1 awrt 36.7	
(b)	M1 $\pm \frac{455 - 450}{\sqrt{\frac{55}{25}}}$	
	A1 awrt 3.4	
	A1ft any statement – no conflicting A1ft contextual statement must include " weight of chocolate" and is "greater than 50"	

Question Number	Scheme	Marks	
6(a)(i)	$E(\hat{p}_1) = E\left(\frac{X}{n}\right)$ $= \frac{1}{2}E(X)$		
	$= \frac{1}{n} \times np$	M1	
	= p unbiased	A1cso	
(ii)	$\operatorname{Var}(\hat{p}_{1}) = \operatorname{Var}\left(\frac{X}{n}\right)$ $-\frac{1}{2}\operatorname{Var}(X)$	M1	
	$= \frac{1}{n^2} \times np(1-p)$		
	$=\frac{p(1-p)}{n}$	A1	
b(i)	$E(\hat{p}_{3}) = 3a E(\hat{p}_{1}) + 2a E(\hat{p}_{2})$ = 3ap + 2ap - 5ap	(4 M1	4)
	5ap = p	M1	
	$a = \frac{1}{5}$	A1	
(ii)	$\operatorname{Var}(\hat{p}_3) = \frac{9}{25} \operatorname{Var}(\hat{p}_1) + \frac{4}{25} \operatorname{Var}(\hat{p}_2)$	M1	
	$=\frac{9p(1-p)}{25n}+\frac{4p(1-p)}{25m}$	M1d	
	$=\frac{p(1-p)}{25}\left(\frac{9}{n}+\frac{4}{m}\right)$	A1	6)
(c)	$\frac{p(1-p)}{25} \left(\frac{9}{n} + \frac{4}{m}\right) < \frac{p(1-p)}{n}$ $9m + 4n < 25m$ $4n < 16m$	M1	0)
	$\frac{n}{m} < 4$		
	$\frac{p(1-p)}{25} \left(\frac{9}{n} + \frac{4}{m}\right) < \frac{p(1-p)}{m}$ 9m + 4n < 25n.	M1	

Question Number	Scheme	Marks
	$9m < 21n$ $\frac{9}{21} < \frac{n}{m} \text{ or } \frac{3}{7} < \frac{n}{m}$	
	$\frac{3}{7} < \frac{n}{m} < 4$	A1
(d)	Var $(\hat{p}_1) = 0.05 \ p(1-p)$ Var $(\hat{p}_2) = 0.0167 \ p(1-p)$ Var $(\hat{p}_3) = 0.0207 \ p(1-p)$	M1
	Or since $\frac{1}{3}$ is not in the range $\frac{9}{21} < \frac{n}{m} < 4$ Var (\hat{p}_3) is not the smallest variance.	
	Var $(\hat{p}_1) = 0.05 \ p(1-p)$ Var $(\hat{p}_2) = 0.0167 \ p(1-p)$	
	Therefore \hat{p}_2 ; is the best estimator as it has the smallest variance	A1ft; A1ft (3) Total 16 marks
	Notes	
(a) (i)	M1 either $\frac{1}{n} E(X)$ or $\frac{1}{n} \times np$	
	A1 cso	
(ii)	M1 either $\frac{1}{n^2}$ Var(X) or $\frac{1}{n^2} \times np(1-p)$	
(b) (i)	A1 cso M1 For either $3a E(\hat{p}_1) + 2a E(\hat{p}_2)$ or $3ap + 2ap$ M1 Putting their $E(\hat{p}_3) = p$	
(ii)	M1 for $\frac{9}{25}$ Var $(\hat{p}_1) + \frac{4}{25}$ Var (\hat{p}_2)	
	M1d for substituting (aii) for Var(p_1) and (aii) with <i>m</i> instead of <i>n</i> for Var(p_2) A1 cso	
(c)	M1 Putting Var(\hat{p}_3) < their Var(\hat{p}_1) leading to an inequality of the form $\frac{n}{m} < a$ or	
	$\frac{n}{m} > a$ where a is a constant.	
	M1 Putting Var(\hat{p}_3) < their Var(\hat{p}_2) leading to an inequality of the form $\frac{n}{m} > a$ or	

	$\frac{n}{m} < a$ where a is a constant.
(d)	1/3 is not in their range in part(c) M1 attempt to find all 3 variances or eliminating Var(\hat{p}_3) with reason and finding the other 2 variances. A1ft correct estimator chosen. A1ft correct supporting reason from correct working for their var formulae SC if 1/3 is in their range in part(c) they may get
	B1 for stating \hat{p}_3
	B1dependent on the previous B being awarded- stating smallest variance award first two marks on epen.

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u>

Order Code UA031443 Summer 2012

For more information on Edexcel qualifications, please visit our website <u>www.edexcel.com</u>

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

Welsh Assembly Government

Mark Scheme (Results)

Summer 2013

GCE Statistics 4 (6686/01R)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013 Publications Code UA037008 All the material in this publication is copyright © Pearson Education Ltd 2013

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.
- 8. In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme.

Question Number	Scheme	Marks
1.(a)	P(X > 1.690) = 0.975	
	P(X > a) = 0.025	M1
	<i>a</i> = 16.013	A1
		(2)
(b)	Upper critical value of $F_{6,4} = 15.21$	B1
	Lower critical value of $F_{6,4} = \frac{1}{9.15} = 0.109$	B1
		(2)
		[4]
	Notes	
(a)	M1 for using 0.025	
(b)	2^{nd} B1 either $\frac{1}{9.15}$ or awrt 0.109	

Question Number	Scheme	Marks
2.		
(a)	$\frac{29 \times 0.36}{6} < \sigma^2 < \frac{29 \times 0.36}{6}$	M1B1,B1
	45.722 16.047	
	$0.228 < \sigma^2 < 0.651$	M1 A1
		(5)
(b)	Since 0.495 lies in the interval or 0.228 < 0.495 < 0.651	B1ft
	yes	B1ftd
		(2)
		[7]
	Notes	
(a)	1 st M1 use of $\frac{29 \times s^2}{\chi^2}$ (May use $\frac{s^2}{F_{29,\infty}}$ or $s^2 \times F_{29,\infty}$)	
	$\left(\text{Based on } \frac{s^2}{\sigma^2} = F_{29,\infty}\right)$	
	1 st B1 45.722 $\left(\text{ using } \frac{s^2}{F_{29,\infty}} \text{ and } s^2 \times F_{29,\infty} \right)$	
	2^{nd} B1 16.047 (may use $F_{29,\infty} = 1.4686$)	
	2^{nd} M1 correct answer using their χ^2 value (correct using their $F_{29,\infty}$)	
	A1 awrt 0.228 and awrt 0.651 (awrt 0.245 and awrt 0.529)	
(b)	ft their interval	

Question Number	Scheme	Marks
3. (a)	<i>X</i> ~Po(2)	
	Size = P($X \ge 3/\lambda = 2$)	
	= 1 - 0.6767	M1
	= 0.3233 awrt	A 1 (7)
	0.323	AI (2)
(b)	Power = $1 - P(0) - P(1) - P(2)$	M1
	$= 1 - e^{-\lambda} - \lambda e^{-\lambda} - \frac{\lambda^2 e^{-\lambda}}{2!}$	A1
	$=1-\frac{1}{2}e^{-\lambda}\left(2+2\lambda+\lambda^{2}\right)$	A1 cso (3)
(c)	r = 0.58 $s = 0.76$	B1, B1
		(2)
(d)		
	0.9	
	0.8	
	0.7	B1ft
		points
	0.6	B1ft curve
	0.4	
	0.3	(2)
	0.2	(2)
	0.1	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	λ	
(e)	$\lambda > 3.1$ allow numbers in range 3.1-3.2	B1 (1)
	NT-4	[10]
(a)	Notes	
(a) (b)	INT for correct expression for size using $PO(2)$	
(D)	1 IVIT for a correct expression in terms of probabilities. Allow 1- $P(X \le 2)$ or 1- $P(X \le 3)$	
	$1^{}$ A1 for correct equation in λ	
	2 nd A1 cso	
(c)	SC if both correct but not to 2dp award B1B0	
(d)	1 st B1ft points	
	2 nd B1ft curve (or straight lines) through points	

Question Number	Scheme	Marks
4. (a)(i)	Ardo $s^2 = \frac{1}{6}(1257.78 - 7(13.4)^2)$	M1
	= 0.143 awrt 0.143	A1
(ii)	Bards $0.261 = \frac{6 \times 0.143 + 8 \times s^2}{7 + 9 - 2}$	M1
	$s^2 = 0.349$	A1 (4)
(b)	$H_0: \sigma_1^2 = \sigma_2^2, H_1: \sigma_1^2 \neq \sigma_2^2$	B1
	critical values $F_{8,6} = 4.15$ $\left(\frac{1}{F_{8,6}} = 0.241\right)$	B1
	$\frac{s_2^2}{s_1^2} = \frac{0.349}{0.143} = \text{awrt } 2.44 \left(\frac{s_1^2}{s_2^2} = \frac{0.143}{.349} = 0.41\right)$	M1; A1
	Since 2.44 (0.424) is not in the critical region we accept H_0 and conclude there is no evidence that the two variances are different	A1cso (5)
(c)	H ₀ : $\mu_B - \mu_A = 0.9$; H ₁ : $\mu_B - \mu_A > 0.9$ both	B1
	CR: $t_{14}(0.05) > 1.761$ 1.761	B1
	$t = \pm \frac{14.8 - 13.4 - 0.9}{\sqrt{0.261\left(\frac{1}{7} + \frac{1}{9}\right)}} = \pm 1.94$	M1 A1
	awrt ± 1.94	A1
	Since 1.94 is in the critical region we reject H_0 and conclude that the mean strength	A1 ft
	of rods from <i>Bards</i> is more than 0.9 kN than that from <i>Ardo</i> .	(6)
	Notes	[15]
(a)(i)	M1 for attempt to calculate s^2	
(ii)	M1 use of correct formula for s_p^2 A1 awrt 0.349 / 0.3495	
(b)	1 st B1 allow $H_0: \sigma_1 = \sigma_2, H_1: \sigma_1 \neq \sigma_2$	
	M1 For use of a correct formula	
(c)	B1 must use μ . If not use A and B it must be clear which is which	
	M1 for attempt at correct test statistic – matching their hypotheses	
	1 st A1 correct test statistic for their hypotheses	

Question Number	Scheme	Marks
5.		
	D = Paper I score – paper II score	
	$H_0: \mu_D = 1$ $H_1: \mu_D > 1$	B1
	<i>d</i> : 4, 1, 7, 3, -1, 1, 9, 2	M1
	$\overline{d} = 3.25$; $s^2 = \frac{162 - 8 \times 3.25^2}{7} = 11.07$ (s = 3.32)	M1;M1
	$t_7 = \frac{3.25 - 1}{3.32 / \sqrt{8}} = 1.9126$ awrt 1.91	M1A1
	$t_7(5\%) = 1.895$	B1
	There is evidence to support the teacher's belief or the score on paper I is more than one mark higher than on paper II	A1 ft (8) [8]
	Notos	
	INDLES	
(a)	1 st M1 for attempting differences	
	2^{nd} M1 for attempting \overline{d}	
	3 rd M1 for attempting s_d or s_d^2 , correct expression with their $\sum d^2$ and \overline{d} or correct calculation (to 2 sf or better) 4 th M1 for use of $\frac{\overline{d}-1}{s\sqrt{8}}$, ft their values.	
	1 st A1 awrt 1.91	
	2 nd B1 for 1.895	
	2 nd A1 contextual conclusion ft their values.	
	SC if they use a 2 sample test they may get the first B1 for H ₀ : $\mu_{I-} \mu_{II} = 1$ and H ₁ : $\mu_{I-} \mu_{II} > 1$	

Question Number	Scheme	Marks
6.		
(a)	H ₀ : $\mu = 500$ [accept ≤ 500], H ₁ : $\mu > 500$	B1
	502-500 2.02	
	$t = \frac{1}{\sqrt{5.6}/2} = 2.93$	M1A1
	$\sqrt{12}$	
	critical value $t_{11}(1\%) = 2.718$	B1
	sufficient evidence that the mean amount of water is more than 500 ml	A1 ft
		(5)
(b)	H ₀ : $\sigma^2 = 9 \text{ or } (\sigma = 3), \text{ H}_1: \sigma^2 < 9 \text{ or } (\sigma < 3)$	B1
	test statistic $\frac{11s^2}{2} = \frac{61.6}{1000} = 6.84$	M1 A1
	σ^2 9	
	critical values $\chi^2_{11}(1\%)$ lower tail=3.053	B1
	Insufficient evidence to suggest that the standard deviation of the amount of water is	Alcso
	less than 3	(5)
		[10]
	Notes	
(a)	M1 attempt at correct statistic	
	1 st A1 awrt 2.93	
	2 nd A1ft correct contextual comment including amount , water and 500	
(b)	$1^{\rm st}$ B1 Both hypotheses, must use σ	
	2 nd B1 for critical value, this should be compatible with their alternative hypothesis	
	3 rd A1cso cso. contextual comment, include standard deviation/ variance and water	

Question Number	Scheme	Marks
7.		
(a)	$\frac{CV - 202}{2/\sqrt{n}} = -2.3263$	M1 B1
	$CR \le 202 - \frac{4.6526}{\sqrt{n}}$ or $202 - 2.3263\sqrt{\frac{4}{n}}$	A1
		(3)
(b)	$\frac{CV - 200}{2\sqrt{n}} = 1.6449 \text{or} \frac{2 - \frac{4.6526}{\sqrt{n}}}{\frac{2}{\sqrt{n}}} > 1.6449$	M1 B1
	$CV = 200 + \frac{3.2898}{\sqrt{n}}$	
	Solving simultaneously	
	$2 = \frac{7.9424}{\sqrt{n}} \qquad \text{or } \sqrt{n} - \frac{4.6526}{2} > 1.6449$	M1
	$\sqrt{n} = 3.9712$	A1
	n = 15.77	A1
	n = 16	A1
		(6)
		503
		[9]
	Notes	
	it is done	
(a)	1^{st} M1 use correct formula equal a z value	
	A1 allow use of <	
(b)	1^{st} M1 use correct formula equal a z value	
	B1 – if B mark lost in part (a) allow 1.64 or 1.65	
	1 st A1 awrt 3.97 may be implied by an answer of 15.77 or an answer of 16 and using 1.6449	
	2 nd A1 awrt 15.8 may be implied by an answer of 16	

Question Number	Scheme	Marks
8.		
(a)	$\mathbf{E}\left(\sum_{i=1}^{n} W_{i}\right) = n\mu$	B1
	$\mathbf{E}\left(W_{i}^{2}\right) = \mathbf{Var}\left(W_{i}\right) + \left(\mathbf{E}(W_{i})\right)^{2}$	M1
	$= \sigma^2 + \mu^2$	A1
	$\mathbf{E}\left(\sum_{i=1}^{n} W_{i}^{2}\right) = \mathbf{E}(W_{1}^{2} + W_{2}^{2} + \dots + W_{n}^{2})$	
	$= n(\sigma^2 + \mu^2)$	A1 cso
(b)		(4)
(0)	$\mathbf{E}\left(\frac{1}{n}\sum_{i=1}^{n}W_{i}\right) = \frac{1}{n}\mathbf{E}\left(\sum_{i=1}^{n}W_{i}\right)$	
	$=\mu$	B1
	$\operatorname{Var}\left(\frac{1}{n}\sum_{i=1}^{n}W_{i}\right) = \frac{1}{n^{2}}\operatorname{Var}\left(W_{1}+W_{2}+\ldots+W_{n}\right)$	
	$=\frac{1}{n^2}n\sigma^2$	
	$=\frac{\sigma^2}{n}, \rightarrow 0 \text{ as } n \rightarrow \infty$	B1,B1d
		(3)
(c)	$\mathbf{E}\left[\frac{1}{n}\left(\sum w_i^2\right) - \left(\overline{w}\right)^2\right] = \frac{1}{n} \times n\left(\sigma^2 + \mu^2\right) - \mathbf{E}(\overline{w}^2)$	M1
	$\operatorname{Var}(\overline{w}) = \operatorname{E}(\overline{w}^2) - \left[\operatorname{E}(\overline{w})\right]^2 \implies \operatorname{E}(\overline{w}^2) - \mu^2 = \frac{\sigma^2}{n}$	M1
	Hence expected value is $(\sigma^2 + \mu^2) - \frac{\sigma^2}{n} - \mu^2 = \frac{(n-1)\sigma^2}{n}$	A1
	Bias = $(-)\frac{\sigma^2}{n}$	A1
		(4)
(d)	$\frac{n}{(n-1)}U$	B1
		(1)
		[12]

	Notes	
(a)	1 st M1 using $E(W_i^2) = Var(W_i) + (E(W_i))^2$	
(b)	2^{nd} B1 stating $\operatorname{Var}\left(\frac{1}{n}\sum_{i=1}^{n}W_{i}\right) = \frac{\sigma^{2}}{n}$	
	3 rd B1 dependent on 2 nd B1, stating $\frac{\sigma^2}{n} \to 0$ as $n \to \infty$	
(c)	1^{st} M1 attempting correct method with their answer to part (a) – award for	
	$\left(\sigma^2 + \mu^2\right) - E\left(\frac{1}{n}\sum_{i=1}^n w_i\right)^2$	
	2^{nd} M1 using Var $(\overline{w}) = E(\overline{w}^2) - [E(\overline{w})]^2$	
(d)	Allow $\frac{n}{(n-1)}\sigma^2$	

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u> Order Code UA037008 Summer 2013

For more information on Edexcel qualifications, please visit our website www.edexcel.com

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

Mark Scheme (Results)

Summer 2013

GCE Statistics 4 (6686/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013 Publications Code UA037005 All the material in this publication is copyright © Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.
- 8. In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme

Question Number	Scheme	Marks
1.	$H_0: \sigma^2 = 2.4^2$ $H_1: \sigma^2 \neq 2.4^2$	B1
	$s^{2} = \frac{1414.08 - 10 \times \left(\frac{113.4}{10}\right)^{2}}{9} = 14.236$	M1 A1
	$\chi^2 = \frac{9s^2}{\sigma^2} = \frac{9 \times 14.236}{2.4^2} = 22.24375$	M1 A1
	Critical Value $\chi_9^2(0.025) = 19.023$	B1
	Significant result, there is evidence of a change in standard deviation or the data do not support George's belief	A1cso (7) [7]
	Notes	
	1 st B1 Both hypotheses, must use σ . Allow $H_0: \sigma = 2.4$ $H_1: \sigma \neq 2.4$ 1 st M1 correct method used 1 st A1 awrt 14.2 2 nd M1 $\chi^2 = \frac{9 \times "their \ s^2 "}{2.4^2}$ 2 nd A1 awrt 22.2 2 nd B1 for critical value, this should be compatible with their alternative hypotheses for one tail test) 3 rd A1ft fully correct solution only	othesis (16.919

Question Number	Scheme	Marks	
2. (a)	d = Jan - June: -2, 1, -3, 2, -2, 3, 2, 2	M1	
	$\overline{d} = 0.375$, $\sum d^2 = 39 \Longrightarrow s^2 = 5.4107$ or $s = 2.326$	M1, M1	
	$t_{7}(0.025) = 2.365$	B1	
	Confidence Interval: $0.375 \pm 2.365 \times \frac{2.326}{\sqrt{8}}$	M1	
	= <u>(-1.57, 2.32)</u> (o.e.)	A1,A1 (7)	
(b)	$\mathbf{H}_0: \boldsymbol{\mu}_D = 0 \qquad \mathbf{H}_1: \boldsymbol{\mu}_D \neq 0$	B1	
	Comment that 0 is in the interval	M1	
	Not sig, no evidence of a change in mean time to assemble component	A1ft (3)	
	Notes	[-•]	
(a)	1 st M1 for attempting differences		
	2^{nd} M1 for attempting \overline{d}		
	3^{rd} M1 for attempting s_d^2 , correct expression with their $\sum d^2$ and \overline{d} or co	rrect calculation	
	(to 2 sf or better)		
	4^{th} M1 for use of a correct CI formula, using a value for t and ft their values	5.	
	1^{st} A1 for lower limit of -1.57 or -2.32		
	2 nd A1 for corresponding upper limit		
S.C.	Allow A1A1 for (0, 2.32)		
(h)	B1 for both hypotheses using μ_D		
	M1 for a comment about 0 being in (or out) of <u>their</u> interval		
	A1 contextual conclusion – must include assemble components	1.1	
S.C.	award the B1 for $H_0: \mu_x - \mu_y = 0$ $H_1: \mu_x - \mu_y \neq 0$ or the correct hypotheses.		

Question Number		Scheme	Marks
3.	(a)	$\mathbf{H}_{0}:\boldsymbol{\sigma}_{A}^{2}=\boldsymbol{\sigma}_{B}^{2}\qquad \mathbf{H}_{1}:\boldsymbol{\sigma}_{A}^{2}\neq\boldsymbol{\sigma}_{B}^{2}$	B1
		$F = \frac{s_B^2}{s_A^2} = \frac{4.37^2}{4.24^2} = 1.0622$	M1A1
		$F_{12,6}$ (0.01) = 7.72	B1
		Not sig, so no evidence of a difference in variances	A1ft (5)
	(b)	$\mathbf{H}_0: \boldsymbol{\mu}_A = \boldsymbol{\mu}_B \qquad \mathbf{H}_1: \boldsymbol{\mu}_A < \boldsymbol{\mu}_B$	B1
		$s_p^2 = \frac{6 \times 4.24^2 + 12 \times 4.37^2}{18} = 18.7238$ or $s_p = 4.327$	M1
		$t = \pm \frac{14.31 - 8.43}{s_p \sqrt{\frac{1}{7} + \frac{1}{13}}} = \pm 2.8985$ awrt 2.9	M1A1
		$t_{18}(0.01) = 2.552$	B1
		sig, there is evidence to support archaeologist's claim <u>or</u> there is evidence that bricks for site <i>B</i> have higher mean compression strength than those from site <i>A</i> .	A1ft (6)
	(c)	The test in (b) requires $\sigma_{A}^{2} = \sigma_{B}^{2}$ and the test in part (a) shows that this is a reasonable assumption. (o.e.)	B1 (1)
			[12]
		Notes	
	(a)	M1 for use of a correct formula Allow $F = \frac{s_A^2}{s_B^2} = \frac{4.24^2}{4.37^2} = 0.941$ with	0.1295
0	b)	B1 if A and B not used it must be clear which is A and which is B	
	- /	1 st M1 for attempt to calculate s_p or s_p^2	
		2 nd M1 for attempt correct test statistic	
	0)	Need to refer to 'allows us to assume variances the same' and this is need	
(C)	oe	

Question Number	Scheme	Marks
4. (a)	$E(X) = \mu = \frac{2a-a}{2} = \frac{a}{2};$ $E(\overline{X}) = \mu = \frac{a}{2}$ so biased estimator for a	M1;A1
	$Bias = \frac{a}{2} - a = -\frac{a}{2}$	B1(accept \pm)
(b)	<i>k</i> = 2	(3) B1 (1)
(c)	$\operatorname{Var}(X) = \sigma^2 = \frac{(2a - a)^2}{12} = \frac{9a^2}{12} = \frac{3a^2}{4}; \operatorname{Var}(\overline{X}) = \frac{\sigma^2}{2}$	B1;B1
	$Var(Y) = k^2 Var(\overline{X}) = 4, \times \frac{\sigma^2}{2} = 4 \times \frac{3a^2}{4 \times 2} = \frac{3}{2}a^2$	M1,A1 (4)
(d)	$\mathbf{E}(M) = \int \frac{2x(x+a)}{9a^2} \mathrm{d}x = \left[\frac{2x^3}{27a^2} + \frac{ax^2}{9a^2}\right]_{-a}^{2a}, = \left(\frac{16a}{27} + \frac{4a}{9}\right) - \left(-\frac{2a}{27} + \frac{a}{9}\right) [=a]$	M1A1,M1d
	So $E(M) = a$ and therefore M is an unbiased estimator for a	A1cso (4)
(e)	$Var(M) = \frac{3}{2}a^2 - a^2 = \frac{1}{2}a^2$	B1 (1)
(f)	Var(M) < Var(Y), so <i>M</i> is the better estimator of <i>a</i>	M1, A1 (2)
(g)	Maximum value = $\underline{5}$	B1ft (1) [16]
	Notes	
(a)	M1 for use of formula or integration or symmetry to find $E(X)$	
(c)	1 st B1 for use of formula for variance	
	2^{nd} B1 for use of $\frac{\sigma^2}{n}$ formula	
	M1 for $k^2 \operatorname{Var}(\overline{X})$ and ft their k	
(d)	1^{st} M1 for attempt at correct integration of correct expression 1^{st} A1 for correct integration 2^{nd} M1d dependent on previous M, for attempting to use correct limits	
(f)	M1 for comparison of their $Var(Y)$ and their $Var(M)$	
(g)	B1ft for calculation of their estimate based on their choice in (f). If they choose Y answer is 4 (or twice their k)	

	$= 30\lambda e^{-\lambda} + 15(1 - \lambda e^{-\lambda}) = 15(1 + \lambda e^{-\lambda})$	A1
	slower if: $15(1 + \lambda e^{-\lambda}) > 20$, $\Rightarrow \lambda e^{-\lambda} > \frac{1}{3}$	M1,A1cso (4)
(g)	$\lambda e^{-\lambda}$ with $\lambda = 1$ is 0.36, with $\lambda = 2$ is 0.27so second(statisticians) test is slower if $\lambda = 1$ but faster for $\lambda = 2$. Second test is more powerful for all λ	B1
	Choose second test - more powerful and faster for $\lambda \ge 2$	B1 (2) [17]
	Notes	
(a)	M1 for correct expression for size using Po(2)	
(b)	M1 for correct expression using Po(5)	
(c)	1 st M1 for a correct expression in terms of probabilities Alternate answer $1 - [P(X=0) + P(X=1) \times P(X \le 1)]$ 2 nd M1 for an attempt at a correct equation in λ 1 st A1 for a correct expression in λ	
(e)	1 st B1 points 2 nd B1 curve (or straight lines)	
(f)	1 st M1 for an attempt to calculate expected time Alternate method 15 + 15x P(X = 1) 1 st A1 for a correct expression in terms of λ 2 nd M1 for attempt at correct inequality	
(g)	$1^{st} B1$ for a comment about power & timings $2^{nd} B1$ for selecting second test	

Ques Nun	stion nber	Scheme	Marks
6.	(a)	$\mathbf{H}_{0}: \boldsymbol{\sigma}_{A}^{2} = \boldsymbol{\sigma}_{B}^{2} \qquad \mathbf{H}_{1}: \boldsymbol{\sigma}_{A}^{2} \neq \boldsymbol{\sigma}_{B}^{2}$	B1
		$s_A^2 = (0.25)^2 = 0.0625$ $s_B^2 = (0.178885)^2 = 0.032$	B1B1

	$F = \frac{0.0625}{0.032} = 1.953$	M1A1
	Critical Value: $F_{3,5} = 5.41$	B1
	not sig, samples come from populations with common variance	A1cso (7)
(b)	$s_p^2 = \frac{3 \times 0.25^2 + 5 \times 0.032}{8} = 0.04343 = (0.0284)^2$	M1A1
	Use $\frac{8s_p^2}{\sigma^2} \sim \chi_8^2$	M1
	$1.344 < \frac{8 \times 0.0434}{\sigma^2} < 21.955$	B1,B1
	99% confidence interval is (0.0158, 0.259)	A1 (6) [13]

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u>

Order Code UA037005 Summer 2013

For more information on Edexcel qualifications, please visit our website www.edexcel.com

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

Mark Scheme (Results)

Summer 2014

Pearson Edexcel GCE in Statistics S4R (6686/01R)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2014 Publications Code UA040132 All the material in this publication is copyright © Pearson Education Ltd 2014

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{1}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

Ignore wrong working or incorrect statements following a correct answer.

PMT

PMT	Γ
-----	---

Que	estion	Scheme	Mar	ks
1.	(a)	[New – standard =] $d: 7, 4, -5, 18, -12, 18, 11, 13.$	M1	
		$\overline{d} = 6.75$	M1	
		$s_d^2 = \frac{1172 - 8 \times 6.75^2}{7} = 115.3571$ or $s_d = 10.7404$	M1	
		$H_0: \mu_d = 0$ $H_1: \mu_d > 0$	B1	
		6.75 c	M1	
		$l_7 = \frac{s_d}{\sqrt{8}} = 1.7775$ or $\frac{s_d}{\sqrt{8}} = 1.895 \therefore CR$ $c > awrt 7.2$	A1	
		awrt <u>1.78</u>		
		$t_7(5\%)$ one tail critical value is <u>1.895</u> (or prob. = 0.05935)	B1	
		Not significant.		
		There is insufficient evidence that the new medicine is better or the new medicine	Alft	(8)
		is not recommended.		
	(b)	Need the <u>differences</u> between levels triggering coughing to be <u>normally</u> distributed	B1	(1)
			(9 mar	ks)
		Notes		
	(a)	1^{st} M1 for attempting the ds		
		2^{nd} M1 for attempting d		
		3^{rd} M1 for attempting s_d or s_d^2		
		1 st B1 for both hypotheses correct in terms of μ or μ_d		
		4 th M1 for attempting the correct test statistic $\frac{6.75}{s_d/\sqrt{8}}$ or $p = \text{awrt } 0.06 \text{ or } \frac{c}{10.7/\sqrt{8}} =$	t value	
		1st A1 1.78 or awrt 0.06 or awrt 7.2		
		2^{nd} B1 1.895 or awrt 0.06		
		$2^{n\alpha}$ A1ft for a correct comment in context based on their test statistic and their cv.		
	(b)	B1 for a comment that mentions "differences" and "normal" distribution		

Question	Scheme	Marks
2. (a)	[$X =$ no. of defects in 4 square metres.] $X \sim Po(6)$	
	[Size =] $P(X > 10) + P(X = 9 \text{ or } 10)P(X > 10)$	M1
	=(1-0.9574)+(0.9574-0.8472)(1-0.9574)	M1A1
	= 0.04729 = awrt 0.0473	A1 (4)
(b)	$Y \sim \text{Po}(8)$	B1
	Power = $1 - (P(X \le 8) + [P(X = 9) + P(X = 10] \times P(X \le 10))$	
	Or $(1 - P(X \le 10)) + [P(X = 9) + P(X = 10] \times (1 - P(X \le 10)))$	M1
	=(1-0.8159)+(0.8159-0.5925)(1-0.8159)	
	= 0.22522 = awrt 0.225	A1 (3)
		(7 marks)
	Notes	
(a)	1 st M1 for a correct expression/selection of probabilities	
	$2^{nd}M1$ for use of Po(6) and at least one correct prob. seen	
	May see $P(X = 9) = \frac{e^{-6}6^9}{9!} = 0.06883 \text{ or } P(X = 10) = \frac{e^{-6}6^{10}}{10!} = 0.04130$	
	1 st A1 for a fully correct expression	
	2^{nd} A1 for awrt 0.0473	
(b)	B1 for evidence of use of Po(8)	
	M1 for an expression of the correct form with at least one correct prob.	
	A1 for awrt 0.225	

Que	estion	Scheme	Mark	s
3.	(a)	$H_0: \sigma_A^2 = \sigma_B^2$ $H_1: \sigma_A^2 \neq \sigma_B^2$	B1	
		$(F_{8,11} =) \frac{2.98^2}{2.33^2} = (1.6357)$	M1	
		$F_{8,11}$ 10% (two-tail) cv = 2.95 (or prob. = awrt 0.22)	DI	
		Not significant so can accept the assumption that variances are equal.	Al	(4)
	(b)	$\mathbf{H}_0: \boldsymbol{\mu}_A = \boldsymbol{\mu}_B \qquad \mathbf{H}_1: \boldsymbol{\mu}_A \neq \boldsymbol{\mu}_B$	B1	
		$s_p^2 = \frac{8 \times 2.98^2 + 11 \times 2.33^2}{19}$, = 6.88216 or $s_p = 2.62338$	M1, A1	
		$(t_{19} =)(\pm) \frac{7.13 - 6.23}{s_p \sqrt{\frac{1}{9} + \frac{1}{12}}} = (\pm)0.7780047$ = awrt <u>0.778</u>	M1 A1	
		t_{19} (0.05) two-tail cv = 2.093	B1	
		[Not significant]		
		Insufficient evidence of a <u>difference in mean</u> milk <u>yields</u> between the two <u>breeds</u>	A1	
	(c)	Test in part(b) requires the variances to be equal. The test in part (a) showed that the variances could be assumed to be equal.	B1	(/)
			(12 mar	(1) • ks)
		Notes		
	(a)	1 st B1allow σ or σ^2		
	(b)	1^{st} M1 for attempting s or s ²		
	(U)	$1^{\text{st}} \Lambda 1$ for awrt 6.90 or 2.63		
		2^{nd} M1 for use of a correct test statistic		
		2^{nd} A1 for awrt 0.77 (accept \pm)		
		$2^{n\alpha}$ B1 for 2.093 (allow ± 1.729 for one-tailed H ₁)		

Questio	1 Scheme	Marks
4. (a)	$s^{2} = \frac{42397 - 10 \times \left(\frac{619}{10}\right)^{2}}{9} = 453.433 = awrt \underline{453}$	B1
	$H_0: \sigma = 19.71 \text{ (or } \sigma^2 =) H_1: \sigma > 19.71 \text{ (or } \sigma^2 >)$	B1
	$\frac{(n-1)s^2}{\sigma^2} \sim \chi^2_9 \qquad \text{test statistic} = 10.5046 = \text{awrt } \underline{10.5}$	M1A1
	χ^2_{9} (0.05) cv = 16.919	B1
	Not significant so insufficient evidence that the <u>scores</u> of the <u>students</u> are more varied than normal.	A1
	Admission tutor's claim is not supported	(6)
(b	$\chi^{2}_{29}(0.01) \text{ cv} = 49.588$	B1
	Reject H ₀ if $\frac{29S^2}{19.71^2} > 49.588$	M1
	So critical region is $S^2 > 664.281 = awrt 664.281$	A1cso (3)
(0	P(Type II error) = P(S ² < 664.281 σ = 22.20) or $P\left(\chi_{29}^2 < \frac{664.281 \times 29}{22.20^2}\right)$	M1 A1ft
	$= P(\chi^{2}_{29} < 39.088) = 0.90 = awrt \underline{0.90}$	A1 (2)
		(3)
		(12 marks)
	Notes	
(a) M1 for use of the correct test statistic	
(b	M1 for use of a correct expression (LHS) only	
(0	M1 for a correct probability expression involving S^2 or χ^2_{29} . Ft their CR, may by a correct answer	ay be implied
	1 st A1ft for a correct probability expression with χ^2_{29} but ft their CR, may be implied correct answer	ied by a

PMT			

Que	estion	Scheme	Marks
5.	(a)(i)	$\overline{x} = \left(\frac{880}{15}\right) = 58.6$ or awrt 58.7	B1
		$s_x^2 = \left(\frac{54892 - 15 \times 58.\dot{6}^2}{14}\right) = 233.238$	B1
		$t_{14}(0.025) \mathrm{cv} = 2.145$	B1
		95% CI for μ is 58.6±2.145× $\sqrt{\frac{233.238}{15}}$	M1
		= (50.209, 67.124) = awrt (50.2, 67.1)	A1, A1
	(ii)	$\chi_{14}^{2}(0.025) = 5.629, \qquad \chi_{14}^{2}(0.975) = 26.119$	B1, B1
		95% CI for σ^2 is given by: $5.629 < \frac{14s_x^2}{\sigma^2} < 26.119$	M1
		So 95% CI for σ is $= (125.017, 580.0911)$ = (11.1811, 24.0850) = awrt (11.2, 24.1)	A1 A1 (11)
	(b)	Require P(S > d) ≤ 0.80 i.e. P $\left(Z > \frac{d - \mu}{\sigma}\right) \leq 0.80$	
		From tables ± 0.8416	B1
		So require: $\frac{d-\mu}{\sigma} > -0.8416$	M1
		i.e. $d > \mu - 0.8416\sigma$	A1
		Worst case is when $\mu = \mu_{\text{max}}$ and $\sigma = \sigma_{\text{min}}$	M1
		So $d > 67.1 - 0.8416 \times 11.2$ (= 57.674) so they should set a pass mark of 58	A1 (5) (16 marks)
		Notes	
	(a)	1 st M1 'their \overline{x} ' $\pm t$ value $\times \frac{\text{'their } s'}{\sqrt{15}}$	
		$ \begin{array}{ll} 1^{\text{st}} \text{A1} & \text{for awrt 50.2} \\ 2^{\text{nd}} \text{A1} & \text{for awrt 67.1} \end{array} $	
		2 nd M1 for use of their values in $\chi^2 < \frac{14s^2}{\sigma^2} < \chi^2$	
		3 rd A1 for awrt 125 or 580 4 th A1 for awrt 11.2 and 24.1	
	(b)	1 st M1 for forming a correct expression in <i>d</i> , μ , σ and their <i>z</i> value 2 nd M1 for using their top value from CI for μ and lowest value for CI for σ	

Question	Scheme	Marks
6. (a)	$E(X) = \int_{0}^{a} x \frac{2}{a^{2}} x dx = \left[\frac{2}{a^{2}} \frac{x^{3}}{3}\right]_{0}^{a} = \frac{2a}{\underline{3}}$	B1cso
	$E(X^{2}) = \int_{0}^{a} x^{2} \frac{2}{a^{2}} x dx = \left[\frac{2}{a^{2}} \frac{x^{4}}{4}\right]_{0}^{a} = \frac{a^{2}}{2} \text{ so } \sigma^{2} = \frac{a^{2}}{2} - \frac{4a^{2}}{9} = \frac{a^{2}}{\underline{18}}$	M1 A1
	So $E(\overline{X}) = \mu = \frac{2a}{3}$ and $Var(\overline{X}) = \frac{\sigma^2}{n} = \frac{a^2}{18n}$	A1cso (4)
(b)	$p = \frac{3}{2}$ and $\operatorname{Var}(S) = \frac{9}{4}\operatorname{Var}(\overline{X}) = \frac{a^2}{\underline{8n}}$	B1, B1ft (2)
(c)	$E(M) \rightarrow a$ as $n \rightarrow \infty$, and $Var(M) \rightarrow 0$ as $n \rightarrow \infty$ So <i>M</i> is a consistent estimator of <i>a</i>	B1, B1 dB1 (3)
(d)	$q = \frac{2n+1}{2n}, \text{Var}(T) = \frac{(2n+1)^2}{4n^2} \times \frac{1}{(n+1)(2n+1)^2} a^2, = \frac{a^2}{4n(n+1)}$	B1, M1, A1 (3)
(e)	$\frac{a^2}{4n(n+1)} < \frac{a^2}{8n} \Leftrightarrow 2 < n+1 \Leftrightarrow 1 < n \text{So } \operatorname{Var}(T) < \operatorname{Var}(S)$	M1 A1
	So (since both are unbiased) choose T since it has the lower variance	Alcso. (3)
(f)	$m = 7.8$ so using t gives estimate of $\frac{11}{10} \times 7.8 = 8.58$ [NB $\overline{x} = 6$ and s gives 9]	M1, A1ft (2)
(g)	Using Var(T) = $\frac{a^2}{120}$; so standard error is $\frac{8.58}{\sqrt{120}}$, = awrt <u>0.78</u> [NB <i>s</i> gives $\frac{a}{\sqrt{40}}$ = 1.42]	M1;A1 (2) (19 marks)
	Notes	
(a)	1 st B1 for some working to establish μ . Allow median of triangle for example. 1 st M1 for correct method for σ^2	
(b)	2^{nd} B1ft ft their value of p	
(c)	3^{rd} dB1 dependent on both of first 2 Bs in (c) for concluding that M is consistent	
(d)	M1 for correct use of $Var(T) = q^2 Var(M)$ for their q.	
(e) (f)	M1 for attempt to compare $Var(T)$ and $Var(S)$ 1 st A1 for clearly establishing that $Var(T) < Var(S)$ 2 nd A1 for choosing <i>T</i> and stating variance is smaller SC M0 A0 B1 for T because it has a smaller variance M1 for using their estimator chosen in (e)	
(g)	M1 for using their Variance formula to calculate std. error. subst in $n=4$ and their	r (f)

PMT

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

Mark Scheme (Results)

Summer 2014

Pearson Edexcel GCE in Statistics S4 (6686/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2014 Publications Code UA040129 All the material in this publication is copyright © Pearson Education Ltd 2014

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- or d... The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
 - 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
 - 7. Ignore wrong working or incorrect statements following a correct answer.

Question Number	Scheme							
1.	$H_0: \mu = 100$ $H_1: \mu < 100$							
	$t = \frac{ \bar{x} - \mu }{s/\sqrt{n}} = \frac{ 92.875 - 100 }{8.3055/\sqrt{8}} = 2.4264 \text{ or } \frac{c - 100}{8.3055/\sqrt{8}} = -1.895 \therefore \text{CR } c < 94.435$	M1A1						
	$t_7(5\%) = \pm 1.895$	B1						
	There is evidence to reject H ₀ . <u>Malcolm's belief is supported</u>							
	or there is evidence that the amount of oil placed in bottles is less than 100mm							
Notes								
	B1 both hypotheses							
	M1 either $\frac{ 92.875-100 }{8.3055/\sqrt{8}}$ or $p = 0.0228$ or $\frac{c-100}{8.3055/\sqrt{8}} = -(a \ t \ value)$							
	A1 awrt 2.43 or awrt 94.4 or awrt 0.0228							
	B1 \pm 1.895 or 0.0228 < 0.05 (must have correct comparison for hypotheses) A1ft Do Not allow contradictions							

Question Number	Scheme					
2(a)(i)	Type I - H_0 rejected when it is true	B1				
(ii)	Type II - H_0 is accepted when it is false	B1				
			(2)			
(b)	$P(X < c \mid \lambda = 6) \approx 0.05$	M1				
	$P(X \le 2) = 0.0620$					
	$P(X \le 1) = 0.0174$					
	Critical region = $X \le 2$	A1				
	P(Type 1 error) = P($X \le 2 \lambda = 6$) = 0.062	A1cao				
			(3)			
(c)	$P(Type \ 2 \ error) = P(X \ge 3 \mid \lambda = 4)$	M1				
	= 1 - 0.2381					
	= 0.7619	A1				
			(2)			
	Notes					
(b)	M1 use of Po(6)					
	A1 correct CR. May be implied by correct probability. Alow if written as part of a 2 tailed CR					
(c)	M1 using Po(4) and 1 - P($X \le 2$), ft their CR in (b) if one tail A1awrt 0.762					

Ρ	M	Τ

Question Number	Scheme	Marks
3(a) (i)	$\bar{x} = \frac{181}{9} = 20.111 \dots$	B1
	$s_x^2 = \left(\frac{3913 - 9 \times \overline{x}^2}{8}\right) = 34.1111 (s_x = 5.84)$	B1
	$t_{\rm e}(0.025) \ \rm cy = 2.306$	B1
	95% CI for μ is = 20.111 ± 2.306 × $\frac{5.84}{\sqrt{9}}$	M1
	= (15.6, 24.6) awrt <u>(15.6, 24.6)</u>	A1, A1
(ii)	$\chi_8^2(0.025) = 2.18(0), \chi_8^2(0.975) = 17.535$	B1B1
	95% CI for σ^2 is given by 2.180 < $\frac{8s_x^2}{\sigma^2}$ < 17.535	M1
	So 95% CI for σ^2 is = <u>awrt (15.6, 125)</u>	A1
		(10)
(b)	Require $P(X < 16) = P\left(Z < \frac{16 - \mu}{\sigma}\right)$ to be as small as possible OR	
	$\frac{16-\mu}{\sigma}$ to be as large as possible but negative; imply lowest σ and largest μ .	M1
	$P(Z < \frac{16 - 24.6}{\sqrt{15.6}}); = 1 - 0.9854 = 0.0146 \text{ or } 0.0147$	M1A1ft;A1
		(4)
	Notes	
(a)(i)	1 st M1 ' their \overline{x} ' $\pm t$ value $\times \frac{\text{'their s'}}{\sqrt{9}}$	
	1 st A1 awrt 15.6	
	2 nd A1 awrt 24.6	
(ii)	$2^{nd} M1 \chi^2 < \frac{8s^2}{\sigma^2} < \chi^2$	
	A1 awrt 15.6 and 125	
(b)	M1 Identify must use lowest σ and largest μ	
	M1 standardising and finding correct area use either limit for μ and σ	
	A1 ft their lowest σ and largest μ	
	A1 awrt 0.0146 or 0.0147	

PMT

Question Number	Scheme	Marks				
4(a)	The <u>differences</u> in the mean number of hours sleep are <u>normally</u> distributed	B1				
		(1)				
b)	Differences are 0.8, 0.7, -0.3, 1.2, 0.7, 2.9, 1.3, 0.8	M1				
	$\bar{d} = = \frac{8.1}{10125}$	M1				
	8 8					
	$1280 - 8 \times 10125^2$					
	$s_d = \sqrt{\frac{13.89 - 8 \times 1.0123}{7}} = 0.901$ both \overline{d} and s	M1				
	$H_0: \mu_D = 1/6 H_1: \mu_D > 1/6$	B1				
	$1.0125 - \frac{1}{6}$					
	$t = \frac{0.901}{100} = a \text{ wrt } 2.65$ or $\frac{c - \frac{7}{6}}{0.901} = 2.988 \therefore CR$ $c > a \text{ wrt } 1.12$	M1A1				
	/ \/8					
	$t_7(1\%) = 2.998$ (or prob. = awrt 0.0164)	B1				
	There is insufficient evidence to suggest the <u>drug increases</u> the mean number of hours	A1ft				
	<u>slept</u> by <u>more</u> than <u>10</u> minutes.					
		(8)				
	Notes					
a)	B1 for a comment that mentions "differences" and "normal" distribution	1				
b)	1^{st} M1 for attempting the ds					
	2^{nd} M1 for attempting \overline{d}					
	1^{st} M1 for s_d or s_d^2					
	1 st B1 for both hypotheses correct in terms of μ or μ_d . (allow a defined symbol) Do not a	llow 10				
	instead of $1/6(awrt 0.167)$ unless working in minutes throughout					
	3 rd M1 for attempting the correct test statistic $\frac{d-\frac{1}{6}}{\frac{1}{6}}$ or $p = \text{awrt } 0.016$ or $\frac{c-\frac{1}{6}}{\frac{1}{6}}$	<i>t</i> value				
	$s_d \sqrt{8}$ 0.901/ $\sqrt{8}$					
	2 nd A1 awrt 2.65 /2.655 or awrt 1.12 or awrt 0.016					
	2 nd B1 2.988 or 0.0164					
	3 rd A1ft for a correct comment in context based on their test statistic and their cv. Do contradictions.					

Question Scheme Marks Number 5 (a) $X \sim B(10, 0.5)$ Size = P(reject $H_0 \mid p = 0.5)$ = P(X < 3 | p = 0.5)= 0.0547**B**1 (1) (b) Power = P(X = 2) + P(X = 1) + P(X = 0)M1 $=45p^{2}(1-p)^{8}+10p(1-p)^{9}+(1-p)^{10}$ A1 $= (1 - p)^8 (45p^2 + 10p(1 - p) + (1 - p)^2)$ $=(1 - p)^{8}(36p^{2} + 8p + 1)$ A1cso (3) (c) *r* = 0.68 **B**1 s = 0.17**B**1 (2)(d) 1 0.9 0.8 0.7 0.6 Power 0.5 B1 points 0.4 B1 curve 0.3 0.2 0.1 0 0 0.1 0.2 0.3 0.4 р (2)(e) $P(Type II error) \le 0.4$ **M**1 $1 - \text{power} \le 0.4$ Power ≥ 0.6 A1 A1 p < 0.23(3) Notes (b) for a correct expression/selection of probabilities **M**1 A1 for a fully correct expression (c) SC B1 B0 both correct but not given to 2 dp (e) may be implied by Power ≥ 0.6 or correct value or by correct answer M1 A1 may be implied by correct answer A1 allow number between 0.22 and 0.23 inclusive and either < or \leq

Question Number	Scheme							
6(a)	It is the probability distribution of <i>T</i> .	B1						
(b)	An estimator is biased if $E(T) \neq \theta$							
(c)	$E(\hat{\mu}_1) = \frac{E(X_3) + E(X_5) + E(X_7)}{3} = \frac{\mu + \mu + \mu}{3} = \mu \therefore \text{Bias} = 0$							
	$E(\hat{\mu}_2) = \frac{5E(X_1) + 2E(X_2) + E(X_3)}{6} = \frac{5\mu + 2\mu + \mu}{6} = \frac{4\mu}{3} \therefore \text{ Bias} = \frac{\mu}{3}$	A1						
	$E(\hat{\mu}_3) = \frac{3E(X_{10}) - E(X_1)}{3} = \frac{3\mu - \mu}{3} = \frac{2\mu}{3} \therefore \qquad \text{Bias} = -\frac{\mu}{3}$	A1 (4						
(d)	$\operatorname{Var}(\hat{\mu}_1) = \frac{1}{9} (\operatorname{Var}(X_3) + \operatorname{Var}(X_5) + \operatorname{Var}(X_7))$	(4 M1	.)					
	$= \frac{1}{9}(\sigma^2 + \sigma^2 + \sigma^2)$ $= \frac{\sigma^2}{3}$	A1						
	Var $(\hat{\mu}_2) = \frac{1}{36} (25 \text{Var}(X_1) + 4 \text{Var}(X_2) + \text{Var}(X_9))$	M1						
	$=\frac{1}{36}(25\sigma^{2}+4\sigma^{2}+\sigma^{2})$	A1						
	$= \frac{1}{6}o$ Var $(\hat{\mu}_3) = \frac{1}{9}(9$ Var $(X_{10}) + $ Var $(X_1))$	M1						
	$= \frac{1}{9}(9\sigma^2 + \sigma^2)$							
	$=\frac{10\sigma^2}{9}$	A1 (6	5)					
(e)(i)	$\hat{\mu}_1$ is the best estimator. It has no bias	B1	9					
(ii)	It has <u>same magnitude of bias as $\hat{\mu}_2$</u> but it has the <u>largest variance</u> $\hat{\mu}_3$ is the worst estimator.	B1ft B1dcao (3	5)					
	Notes							
(c)	M1 finding E($\hat{\mu}$) A1 bias 0 A1 $\pm \frac{\mu}{2}$ A1 $\pm \frac{\mu}{2}$							
(d)	For method marks allow an incorrect variance, M1 squaring 9, M1 Squaring 5 and 2,							
(e)(ii)	M1 adding variances. Do not penalise same mistake twice. Must have idea that its bias is the same as another $(\hat{\mu}_2)$ and state it has largest variance for first B1. ft their values of Var. Second B1 dependent on first B1cao SC $\hat{\mu}_3$ because <u>largest variance</u> B1 B0							

Question Number	Scheme	Marks
7(a)	The variance of the two group's marks must be the same.	B1
	$H_0: \sigma_1^2 = \sigma_2^2$ $H_1: \sigma_1^2 \neq \sigma_2^2$	B1
	$s_1^2 = 16.25$	B1
	$(F_{8,6} =) \frac{16.25}{12.9} = (1.2597) \qquad \left(\frac{1}{F_{8,6}} = \frac{12.9}{16.25} = 0.7938\right)$	M1A1
	$F_{8,6}$ 5% (two-tail) cv = 4.15 (0.241) (or prob. = awrt 0.39)	B1
	Not significant so can accept the assumption that variances are equal.	A1
(b)	$\mathbf{H}_0: \boldsymbol{\mu}_1 = \boldsymbol{\mu}_2 \qquad \mathbf{H}_1: \boldsymbol{\mu}_1 \neq \boldsymbol{\mu}_2$	B1
	$s_p^2 = \frac{8 \times 16.25 + 6 \times 12.9}{14}, = 14.814$ or $s_p = 3.8489$	M1
	$(t_{14} =)(\pm) \frac{30.33 - 31.29}{s_p \sqrt{\frac{1}{9} + \frac{1}{7}}} = (\pm)0.494927$ = awrt <u>0.49</u>	B1 M1A
	$t_{14}(0.025)$ two-tail cv = 2.145	B1
	There is insufficient evidence to reject H_0 . There is no evidence of a significant difference between the <u>mean marks</u> of the two groups	A1
	Notes	
(a)	2^{nd} B1allow σ or σ^2	
	3^{rd} B1 allow awrt 16.3 or $s_1 = awrt 4.03$	
	M1 for use of the correct test statistic	
	5 th B1 allow "assumption is correct"	
(b)	1^{st} M1 for attempting s_p or s_p^2	
	1 st B1 for 30.33	
	2 nd M1 for use of a correct test statistic	
	2^{nd} A1 for awrt 0.49 (accept <u>+</u>) or 0.495	

 2^{nd} B1 for 2.145 (allow \pm 1.761 for one-tailed H₁)

PMT

PMT

PMT

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

Mark Scheme (Results)

Summer 2015

Pearson Edexcel GCE in Statistics 4 (6686/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <u>www.pearson.com/uk</u>

Summer 2015 Publications Code UA042714 All the material in this publication is copyright © Pearson Education Ltd 2015 PhysicsAndMathsTutor.com

General Marking Guidance

• All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

• Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.

• Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.

• There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.

• All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

• Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.

• Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- L or d... The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a

PhysicsAndMathsTutor.com

misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

PhysicsAndMathsTutor.com

June 2015 6686 S4 Mark Scheme

Ques	tion	Scheme							Marks		
Num		Store	Α	В	C	D	Е	F	G	Н	
1.	(a)	Difference	33	63	121	-60	-54	24	-19	33	B1
		July-Jan			$\frac{1}{7}$ 141						
		$d = \frac{111}{8} = (\pm)17.625$								M1	
		or $s_d^{\ 2} = \frac{8}{7} \left(\frac{28241}{8} - 17.625^2 \right) = 3679.4$ $s_d^{\ 2} = \frac{1}{7} \left(28241 - \frac{141^2}{8} \right) = 3679.4$								M1	
		To test $H_0: \mu$ Test stat	$d_d = 0$ ag	ainst H ₁	$: \mu_d > 0$	(o.e.)					B1
		$t = \frac{17.625 - 0}{\sqrt{\frac{3679.4}{3679.4}}} = 0.8218$								M1A1cso	
		Critical value	, $t_7 = 1$.895	• -						B1
		Not in critical	region	therefore	e insuffi	cient rea	son to re	eject H ₀			
		No significant evidence that on average stores sell more lottery tickets in July									A1ft
											(8)
	(b)	July and in January is normally distributed .								B1 (1)	
		Natar								Total 9	
	(a)	1 st B1 for differences all correct (o.e.)									
		1 st M1 attempt to find $\overline{d} = \frac{\sum \text{"their } d\text{"}}{8}$ 2 nd M1 attempting s_d or $s_d^2 \frac{1}{7} \left(\sum \text{"their } d^2 \text{"} - \frac{\left(\sum \text{"their } d\text{"}\right)^2}{8} \right)$									
		2 nd B1 both correct in terms of μ or μ_d (allow a defined symbol) condone $\mu_{July-Jan}$								ly–Jan	
		3 rd M1 for attempting the correct test statistic $\frac{\overline{d}}{\frac{s_d}{\sqrt{8}}}$									
		1 st A1cso awrt 0.822 with no errors.									
		3 rd B1 alternate method, <i>p</i> value of 0.219. Allow 2.365 for 2-tail test Final A1 need conclusion in context, need tickets July and January, ft their test stat and critical value NB difference of 2 means test gains no marks									
									stat and		
	(b)	B1 need diffe	erences	to be no	rmally d	istribute	d, not ju	st norma	al distrib	oution	
PhysicsAndMathsTutor.com

Question	Scheme	Marks	
Number			
2. (a)	$n = 8$ $\sum x = 843$ $\sum x^2 = 89211$		
	\therefore $\overline{x} = 105.375$		
	$s^{2} = \frac{8}{7} \left(\frac{89211}{8} - 105.375^{2} \right) = 54.2678$		
	or	M1A1	
	$s^{2} = \frac{1}{7} \left(89211 - \frac{843^{2}}{8} \right) = 54.2678$		
	Confidence interval is given by		
	$\frac{7 \times 54.267}{14.067} < \sigma^2 < \frac{7 \times 54.267}{2.167}$	M1B1	
	$\therefore 27.004 < \sigma^2 < 175.299$		
	$5.1966 < \sigma < 13.240$	M1d A1	
(h)	Need to assume underlying Normal distribution for weights of blocks of	(6)
	cheese.	B1	
(c)	Lower limit of CL is $> 5 \sigma$ suggests that Fred pools training	(B1ft	1)
(()	Lower mint of CI is > 5 g suggests that Free needs training.	(1)
		,	,
(d)	To test $H_0: \mu = 100$, $H_1: \mu \neq 100 \ (\mu > 100)$	B1	
	where μ is the mean weight of blocks of cheese		
	Test statistic $t = \frac{102.6 - 100}{\sqrt{\frac{19.4}{20}}} = 2.6399$	M1A1	
	Critical value(s): $t_{19} = (\pm)1.729 (1.328)$	B1	
	In critical region, therefore significant evidence to reject H_0 and accept H_1	A1ft	
	Significant evidence that the mean weight of the blocks of cheese is not 100 g	B1cso (e	6)
	(more than 100g)	Total 1	14
	Notes	Iotui	
(a)	1^{st} M1 attempting s or s^2 1^{st} A1 awrt 54.3		
	2^{nd} M1 for $\frac{7s^2}{s^2}$		
	χ^2		
	3^{rd} M1d Dept on previous M mark. Rearranging leading to interval for σ - must	square root	ī
	A1 awrt 5.20 and 13.2 (allow 5.2)		
	NB a correct interval gains full marks	1 4	
(C)	They must have an interval in part(a)	id training .	
(d)	1^{st} B1 Both hypotheses with μ . Allow one-tail		
	$1^{\text{st}} \text{M1} \frac{102.6 - 100}{2}$ 1^{st}A1 awrt 2.64		
	$\frac{s \text{ or } s^2}{\sqrt{s}}$		
	$\sqrt{20}$	TT	
	2^{nd} A1ft a correct statement – do not allow contradicting non context statement	H1	
	3 rd B1cso need correct conclusion in context containing the words in bold from	a fully	
	correct solution. For one tail need "more than 100g"		

Question Number	Scheme	Marks
3. (a)	$s_p^2 = \frac{12 \times 161 + 9 \times 48}{13 + 10 - 2} = \frac{2364}{21} = 112.571 = 112.6 (1dp)$	M1A1cso
(b)	To test $H_0: \mu_s = \mu_a$ against $H_1: \mu_s \neq \mu_a$ (o.e.)	(2) B1
	Test stat, $t = \pm \frac{195 - 186}{\sqrt{112.57(\frac{1}{10} + \frac{1}{13})}} = \pm 2.016$ (awrt2.02)	M1A1
	Critical values, $t_{21} = (\pm)1.721$	B1
	In critical region, therefore significant evidence to reject H_0 and accept H_1 Evidence of difference in mean arm span of adult male swimmers and adult male athletes or No evidence to support Ali's claim .	A1
(c)	To test $H_0: \sigma_s^2 = \sigma_a^2$ against $H_1: \sigma_s^2 \neq \sigma_a^2$	(5) B1
	Test stat, $F_{12,9} = \frac{161}{48} = 3.354 \left(\frac{1}{F_{12,9}} = \frac{48}{161} = 0.2981\right)$	M1A1
	Critical value, $F_{12,9} = 3.07 (0.3257)$	B1
	In critical region, therefore significant evidence to reject H_0 and accept H_1 Evidence of difference in variance of arm span of adult male swimmers and adult male athletes or the data supports Bea's belief	Alcso
	Should do test for variance first as equal variances is necessary assumption	(5) B1
(d)	for <i>t</i> test for means but is not supported in (c), so result in (b) is invalid .	B1d
		(2) Total 14
	Notes	
(a)	M1 for $\frac{12 \times 161 + 9 \times 48}{13 + 10 - 2}$	
	A1cso need to get awrt112.57 or $\frac{2364}{21}$ then write 112.6	
(b)	M1 $\frac{195-186}{\sqrt{112.6(\frac{1}{10}+\frac{1}{13})}}$	
	2^{nd} B1 alternate method, p value of 0.0566 in place of critical value Final A1 requires correct conclusion in context	
(c)	1 st B1 allow $H_0: \sigma_s = \sigma_a$ against $H_1: \sigma_s \neq \sigma_a$	
	M1 allow $\frac{161^2}{48^2}$ if they write the formula down	
(d)	Final A1 requires correct conclusion 1 st B1 equal variances is necessary assumption (may be implied by saying not equal) 2 nd B1d but not supported in (c)/(variances not equal) therefore (b) result invalid	

PhysicsAndMathsTutor.com

Questior Number	Scheme	Marks	S
4. (a	Power function = $P(H_0 \text{ rejected}) = P(X_1 \ge 2) + P(X_1 = 1) \times P(X_2 \ge 1)$		
	$=1-(1-p)^{6}-6p(1-p)^{5}+6p(1-p)^{5}\times(1-(1-p)^{6})$	N / 1 A 1	
	$= 1 - (1 - p)^{6} - 6p(1 - p)^{5} + 6p(1 - p)^{5} - 6p(1 - p)^{11}$	MIAI	
	$=1-(1-p)^6-6p(1-p)^{11}$	A1cso	
			(3)
(b	Size of test is value of power function when $p = 0.05$		
	Size of test $=1-0.95^{\circ}-6\times0.05\times0.95^{\circ}=0.094268$ (awrt 0.0943)	M1A1	(2)
(c	E[number of eggs inspected] = $12 \times P(X_1 = 1) + 6 \times P(X_2 \neq 1)$	M1	(2)
	$= 12 \times 6 \times 0.1 \times 0.9^{5} + 6 \times (1 - (6 \times 0.1 \times 0.9^{5}))$	A1	
	= 8.1257(awrt 8.13)	A1	
			(3)
(d	P(Type II error $ p = 0.1 \rangle = 1 - (value of power function when p = 0.1)$	M1	
	P(Type II error $ p = 0.1 \rangle = 1 - (1 - 0.9^{\circ} - 6 \times 0.1 \times 0.9^{\circ}) = 0.7197$	A1	
	(awrt 0.720)		(2)
			(-)
(e	Prob of Type II error, accepting $p = 0.05$ when it is actually 0.1,	B1	
	unacceptably high, is large, therefore not a good test .		(1)
			(1)
		Total 1	1
	Notes	I Otal I	
(9)	M1 for $P(X_1 \ge 2) + P(X_1 = 1) \times P(X_2 \ge 1)$ or $1 - (P(X_1 = 0) + P(X_1 = 1) \times P(X_2 = 1))$	= 0)) oe o	r a
(a	correct line of working		
	A1 a correct line of working before the final answer		
(b	M1 attempt to subst 0.05 into (a)		
(c	M1 for $12 \times P(X_1 = 1) + 6 \times P(X_1 \neq 1)$		
	A1 $12 \times 6 \times p \times 0.9(1-p)^5 + 6 \times (1-(6 \times p \times (1-p)^5))$		
(d	M1 1-(1-(1- $p)^6$ -6× p ×(1- $p)^{11})$		
(e	B1 idea that the Probability of a Type II error is too high or the power is too lo	ow so the	test
	is not good/powerful or test needs changing		

PhysicsAndMathsTutor.com

Question Number	Scheme	Marks	S
5 (a)	$\overline{x} = \frac{\sum x}{n} = \frac{1116}{9} = 124$ $s^{2} = \frac{9}{8} \left(\frac{138728}{9} - 124^{2}\right) = 43$	B1	
	Or $s^{2} = \frac{1}{8} \left(138728 - \frac{1116^{2}}{9} \right) = 43$	B1	(2)
(b)	Test stat $\chi^2 = \frac{8 \times 43}{25} = 13.76$	M1A1	
	Critical value $\chi^2 = 15.507$ Therefore not in critical region, insufficient evidence to reject H ₀	B1	
(c)	There is evidence at the 5% level that the company's claim is supported CI given by	B1d	(4)
	$\frac{11 \times 8.17}{21.920} < \sigma^2 < \frac{11 \times 8.17}{3.816}$	M1	
(b)	4.0999 < σ^2 < 23.55 awrt 4.10 and 23.6 $\sigma^2 = 25$ is not in CL which suggests Curdin 's (bis) claim may not be true	A1 B1ft	(2)
(u)	o = 25 is not in CI which suggests Gurup 's(ms) claim may not be true.	Total 9	(1)
	Notes		
(a)	B1 124 B1 42	L	
(b)	$M1 \frac{8 \times \text{their } 43}{25}$ A1 awrt 13.8 B1 15 507		
	B1 15.507 B1 dep on previous M1 being awarded. Allow the standard deviation of the IQ oe. Must have IQ M1 11×8.17) scores is	s 5
(C)	A1 both correct B1ft their interval from part(c). Gurdip's claim may not be true		
(u)	NB, no interval in (c) then B0		

Ques Num	stion Iber	Scheme	Marks	6
6.	(a)	$E[A] = \frac{1}{2}(E[X_1] + E[X_2] + E[X_3] + E[Y_1] + E[Y_2] = \frac{1}{2}\left(3 \times \frac{\mu}{3} + 2 \times \frac{\mu}{2}\right) = \mu$	M 1	
		Therefore A is an unbiased estimator	A1	
		$E[B] = \frac{3E[X_1]}{2} + \frac{2E[Y_1]}{3} = \frac{3}{2} \times \frac{\mu}{3} + \frac{2}{3} \times \frac{\mu}{2} = \frac{5\mu}{6}$	A1	
		Therefore <i>B</i> is biased with bias $(-)\frac{\mu}{6}$	B1ft	
		$E[C] = \frac{1}{3} \left(3E[X_1] + 4E[Y_1] \right) = \frac{1}{3} \left(\frac{3\mu}{3} + \frac{4\mu}{2} \right) = \mu$		
		Therefore C is an unbiased estimator	A1	(5)
	(b)	Best estimator is unbiased estimator with least variance		(3)
		$Var(A) = \frac{1}{4}(Var X_1 + Var X_2 + Var X_3 + Var Y_1 + Var Y_2)$	M1	
		$=\frac{1}{4}\left(3\times 3\sigma^2 + 2\times \frac{\sigma^2}{2}\right) = \frac{5\sigma^2}{2}$	A1	
		$\operatorname{Var}(C) = \frac{1}{9}(9\operatorname{Var} X_1 + 16\operatorname{Var} Y_1) = \frac{1}{9}\left(9 \times 3\sigma^2 + 16 \times \frac{\sigma^2}{2}\right) = \frac{35\sigma^2}{9}$	A1	
		Therefore A is a better estimator of μ (smaller variance)	B1dft	(A)
	(c)	$\mathbf{E}[D] = \frac{1}{k} \left(2n \times \frac{\mu}{3} + n \times \frac{\mu}{2} \right) = \mu$	M1A1	(+)
		$k = \frac{2n}{3} + \frac{n}{2} = \frac{7n}{6}$	A1	(2)
	(d)	$\operatorname{Var}(D) = \frac{1}{k^2} \left(2n \times 3\sigma^2 + n \times \frac{\sigma^2}{2} \right) = \frac{1}{k^2} \times \frac{13n\sigma^2}{2}$	M1	(3)
		Var $(D) = \frac{36}{40r^2} \times \frac{13n\sigma^2}{2} = \frac{234\sigma^2}{40r^2}$	M1d A1	-
		Therefore $\operatorname{Var} D \to 0$ as $n \to \infty$, therefore D is a consistent estimator	A1dd	(4)
	(e)	Want $234\sigma^2 5\sigma^2$		
		$\frac{49n}{2}$	INI I	
		$\frac{234}{49} \times \frac{2}{5} < n$		
		n > 1.910 So minimum value is $n = 2$	Alcso	
		So minimum value is $n = 2$	111050	(2)
			Total 18	8

	Notes
(a)	M1 for a correct method for E(A) or E(B) or E(C)
	A1 for each correct expectation with a correct method
	B1ft bias of B, condone missing – sign. Do not allow a bias of 0
(b)	M1 Use of Var(aX) = a^2 Var (X) and subst $3\sigma^2$ for Var(X) and $\frac{\sigma^2}{2}$ for Var(Y)
	A1 for each correct variance
	B1dft their variances. Dep on m1 being awarded. If no variances given then B0
(c)	M1 attempts $E(D)$ and puts = to μ (may be implied)
	A1 for $E(D)$
(d)	M1 for $\frac{1}{k^2} \left(2n \times 3\sigma^2 + n \times \frac{\sigma^2}{2} \right)$ or $\frac{1}{k^2} \times \frac{13n\sigma^2}{2}$
	M1d for subst in k
	A1 Correct Var (D)
	A1dd Need correct reason for being a consistent estimator dep on previous method marks being awarded
(e)	M1 for forming an inequality with their $Var(D) <$ their best estimator leading to <i>n</i>

PhysicsAndMathsTutor.com

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom