Mark Scheme 4734 June 2007

1	$\int_0^1 a dx + \int_1^\infty \frac{a}{x^2} dx = 1$	M1		For sum of integrals =1
	$\left[ax\right]_0^1 + \left[-\frac{a}{x^3}\right]_1^\infty = 1$	A1		For second integral.
	a + a = 1	A1		For second <i>a</i>
	$a = \frac{1}{2}$	A1	4	Or from $F(x)$ M1A1 then $F(\infty)=1$ M1, $a=^{1}/_{2}$ A1
2	(i) $\overline{X}_I \square N(5, \frac{0.7^2}{20})$	B1		If no parameters allow in (ii)
	$\overline{X}_E \square \text{N}(4.5, \frac{0.5^2}{25})$	B1	2	If 0.7/20, 0.5/25 then B1 for
				both, with means in (ii)
	(ii) Use $\overline{X}_I - \overline{X}_E \square N(0.5, \sigma^2)$	M1A1		OR $\overline{X}_I - \overline{X}_F - 1 \square$ N(-0.5, σ^2)
	$\sigma^2 = 0.49/20 + 0.25/25$	B1		cao
	1- $\Phi([1-0.5]/\sigma)$	M1		RH probability implied. If 0.7, 0.5
	= 0.0036 or 0.0035	A1	5	in σ^2 , M1A1B0M1A1 for 0.165
3	Assumes differences form a random sample			
	from a normal distribution.	D1	B1	041-4
	$H_0: \mu = 0, H_1: \mu > 0$	B1		Other letters if defined; or in words
	$\overline{x} = 17.2/12$; $s^2 = 10.155$ AEF	B1B1		Or (12/11)(136.36/12-(17.2/12) ²)aef
	EITHER: $t = \frac{\overline{x}}{\sqrt{s^2/12}}$ (+ or -)	M1		With 12 or 9.309/11
	=1.558	A1		Must be positive. Accept 1.56
	1.363 seen	B1		Allow CV of 1.372 or 1.356 evidence
	1.558 > 1.363, so reject H ₀ and accept that t here that the readings from the aneroid device overestimate blood pressure on average	В1√		Explicit comparison of CV(not - with +) and conclusion in context.
	OR: For critical region or critical value of \overline{x}			
	$1.363\sqrt{(s^2/12)}$	M1B1		B1 for correct t
	Giving 1.25(3)	A1		
	Compare 1.43(3) with 1.25(3)	D1a/	o	
	Conclusion in context	B1√	8	

4	(i) Proper							
			P	F				
	Toi al	P	31	11	42	B1		Two correct
	Trial	F	5	13	18	B1		Others correct
			36	24	60		2	
	(ii) (H	0: Tri	al result	s and Pr	oper results			
	are ind	lepen	dent.)					
	E-valu	es:	25.2	16.8		M1		One correct. Ft marginals in (i)
			10.8	7.2		A1		All correct
	$\gamma^2 = 5.3$	$3^2(25)$.2 ⁻¹ +10.	8 ⁻¹ +16.8	⁻¹ +7.2 ⁻¹)	M1		Allow two errors
	,,	`			,	A1		With Yates' correction
	= 9.3	289				A1		art 9.29
	Compare correctly with 7.8794 There is evidence that results are not			M1		Or 7.88		
	indepe			nat resul	ts are not	A1 √	7	Ft χ^2_{calc} .
5	(i) $e^{-\mu} = 0.45$					M1		
	` '		$0 \approx 0.80$	AG		A1	2	0.799 or 0.798 or better seen
	(ii) μ _U	≈ 1.8	 }			 B1		
	Total,	$T \sim F$	20(2.6)			M1		May be implied by answer 0.264
	P(>3)					A1	3	From table or otherwise
	(iii) e ⁻²	$2.62.6^{\circ}$	⁵ /6!			 B1		Or 0.318 from table
	e	5.25.2 ⁶	¹ /4!			B1		
	Multin	oly tw	o proba	bilities		M1		
					3 or 0.0054	A1	4	

physicsandmathstutor.com

4734	Mark Sch	June 2007		
6	(i) $\hat{p} = 62/200 = 0.31$	B1		aef
	Use $\hat{p}_{\alpha} \pm z \sqrt{\frac{\hat{p}_{\alpha} (1 - \hat{p}_{\alpha})}{200}}$	M1		With 200 or 199
	z=1.96	B1		Seen
	Correct variance estimate	A1		ft \hat{p}
	(0.2459,0.3741)	A1	5	art (0.246,0.374)
	(ii)EITHER: Sample proportion has an approximate normal distribution			
	OR: Variance is an estimate	B1	1	Not \hat{p} is an estimate, unless variance mentioned
	(iii) H_0 : $p_\alpha = p_\beta$, $H_{1:}$ $p_\alpha \neq p_\beta$			
	$\hat{p} = (62+35)/(200+150)$	B1		aef
	EITHER: $z=(\pm)\frac{62/200-35/150}{\sqrt{\hat{p}\hat{q}(200^{-1}+150^{-1})}}$	M1		s^2 with, \hat{p} , 200, 150 (or 199, 149)
	,	B 1√		Evidence of correct variance estimate. Ft \hat{p}
	=1.586	A1		Rounding to 1.58 or 1.59
	(-1.96 <) 1.586 < 1.96 Do not reject H ₀ - there is insufficient	M1		Correct comparison with ± 1.96
	evidence of a difference in proportions.	A1		SR: If variance $p_1q_1/n_1+p_2q_2/n_2$ used then: B0M1B0A1(for z=1.61 or 1.62)M1A1 Max 4/6.
	OR: $p_{s\alpha} - p_{s\beta} = zs$	M1		
	$s = \sqrt{(0.277 \times 0.723(200^{-1} + 150^{-1}))}$	B1√		Ft \hat{p}
	CV of $p_{s\alpha} - p_{s\beta} = 0.0948$ or 0.095	A1		
	Compare $p_{s\alpha}$ - $p_{s\beta} = 0.0767$ with their 0.0948 Do not reject H ₀ and accept that there is insufficient evidence of a difference in	M1		
	proportions	A1		Conditional on z=1.96
			6	

7	(i) $G(y) = P(Y \le y)$	M1		May be implied by following line
	$= P(X^{2} \ge 1/y) [\text{or } P(X > 1/\sqrt{y})]$ $= 1 - F(1/\sqrt{y})$ $= \begin{cases} 0 & y \le 0, \\ y^{2} & 0 \le y \le 1, \\ (1 & y > 1.) \end{cases}$	A1 A1		Accept strict inequalities
		A1	4	Or $F(x)=P(X \le x) = P(Y \ge 1/x^2)$ M1 =1 - $P(Y < 1/x^2)$ A1 =1- $G(y)$;etc A1 A
obta	(ii) Differentiate their $G(y)$ to obtain $g(y)=2y$ for $0 < y \le 1$ AG ined	M1	A1	2 Only from G correctly
	$(iii) \int_0^1 2y(\sqrt[3]{y} dy$	M1		Unsimplified, but with limits
	$=[6y^{7/3}/7]$	B1		OR: Find f(x), $\int_{1}^{\infty} x^{-2/3} f(x) dx$ M1
	$=$ $^{6}/_{7}$	A1	3	= $[4x^{-14/3}/(14/3)]; {}^{6}/_{7}$ B1A1 OR: Find H(z), Z= $Y^{1/3}$
3	(i) $P(20 \le y < 25) = \Phi(0) - \Phi(-5/\sqrt{20})$	M1		
	Multiply by 50	A1		
	to give 18.41 AG 18.41 for $25 \le y < 30$ and 6.59 for $y < 20$, $y \ge 30$	A1 A1	4	
	(ii) H ₀ : N(25,20) fits data $\chi^2 = 3.59^2/6.59 + 8.59^2/18.41 + 6.41^2/18.41$	B1		OR <i>Y</i> ~ N(25,20)
	$+1.41^{2}/6.59$	M1		ft values from (i)
	=8.497	A1		art 8.5
	8.497 > 7.815	M1		
	Accept that N(25,20) is not a good fit	A1	5	
	(iii) Use $24.91 \pm z\sqrt{(20/50)}$		M1	With $\sqrt{(20/50)}$
	z = 2.326 (23.44,26.38)	B1 A1	3	art (23.4,26.4) Must be interval
	(iv) No- Sample size large enough to apply CLT Sample mean will be (approximately) normally	B1		Refer to large sample size
	distributed whatever the distribution of Y	B1	2	Refer to normality of sample mean