Mark Scheme 4734 June 2006

4734 Mark Scheme June 2006

	Add two Poisson distributions With mean 17	M1 A1		11	Constantin
	$P(27)=e^{-17}17^{27}/27!$ or $P(\le 27)-P(\le 26)$ 0.00634 or 0.0063, 0.0064 from tables	M1 s A1	4		formula or table A1 0.0052 from N(17,17)
	$H_0: p_1 = p_2 = p_3 = p_4$,			Indic	cation of equality of proportions
	(H₁: They are not all equal) Expected values under H₀=150	B1 B1			
	$X^2 = (12^2 + 23^2 + 15^2 + 20^2)/150$	М1		At le	ast one correct term
	=8.653		A1		Accept art 8.65 or 8.66
	Critical value with 3 d.f. = 7.815	B1			
	($X^2 > 7.185$ so) reject H ₀ and accept t proportions are different.	hat	В1√	6	ft critical value
	Assume population of differences has	a normal			
	distribution. or sample random	B1		Eitha	or accumption
	Or sample random H_0 : $μ_B$ - $μ_A$ =0, H_1 : $μ_B$ - $μ_A$ > 0	B1		AEF	er assumption.
	$t=(23.43-22.84)/\sqrt{(0.548/10)}$	M1		/\LI	
	=2.520		A1		
	CV=1.833	B1		Seer	
1	2.52 > CV so reject H _o	M1		Allov	w from CV 2.262 (2-tail),
1.	812,1.734 Accept that there is evidence that mea has reduced.	an time A1 √	7	ft wr	ong CV
_	c4 1 1 c2 4	•a, 1			
(i)	$J_{q_3} 12$ 4 $J_1 3x^3$		xdx =	-	
	$[x^2/24]$ OR $[-2/(3x^2] + [x^2/24]$ (16- q_3^2)/24=1/4 or 1/3 + q_3^2 / 24 = $\frac{3}{4}$	A1 dep *M1		Eithe	er n equation and attempt to solve
	$q_3 = \sqrt{10}$	A1	4		ept to 3 SF
	If they find F(x): M1A1, M1A1				
(ii) $E(X^2) = \int_{1}^{2} \frac{4}{3x} dx + \int_{2}^{4} \frac{x^3}{12} dx$				
	$E(X) = \int_{1}^{2} \frac{4}{3x^{2}} dx + \int_{2}^{4} \frac{x^{2}}{12} dx$	M1		Eithe	er correct
	$\left[\frac{4}{3}\ln x\right]_1^2 + \left[\frac{x^4}{48}\right]_2^4$	A1			
	$\left[\frac{-4}{3x}\right]_{1}^{2} + \left[\frac{x^{3}}{36}\right]_{2}^{4}$	A1			
	$a = E(X^2)/E(X)$	M1			
	$A = \Gamma(A)/\Gamma(A)$				

76

4734		Mark Sch	June 2006		
5	(i)	(48×72/150) or (48/150)(72/150)×150	M1 A1	2	Multiply and divide relevant values All correct
	(ii)	No, no expected value less than 5		B1	1
	(iii)	H ₀ :Volume and day are independent (H ₁ :Volume and day are not independent Critical value for 4 df=13.28 Test statistic > 13.28, reject H ₀ Accept that volume and day are not independent	ent) B1 M1 A1	B1	Attributes specified
	(iv)	Choose Friday Highest volume	B1	B1	2 Not reference to E values
- 6	(i)	(a) No 0.43 belongs to relevant interval (b)Yes	B1	B1	Must be with reason
		0.43 is outside relevant interval	B1	3	
	(ii)	$H_0:p_R=p_{T_1}$ $H_1:p_R\neq p_T$ Estimate of $p=74/165$ Variance estimate of difference	B1 B1		Proportions
		$=(\frac{74}{165})(\frac{91}{165})(\frac{1}{80}+\frac{1}{85})$	B1		May be implied by later work
		z =(28/80-46/85)/ σ_{est} = -2.468	M1 A1	A1	Standardising Completely correct expression + or - , 2.47
		Compare correctly with CV -2.468<-2.326, or 2.468 > 2.326 Reject H_0 and accept that the	M1		
		proportions differ on the island.	A1	8	Conclusion in context
7	(i)	$T_1 \sim N(2.2,0.75^2), T_2 \sim N(1.8,0.70^2)$ Use $T_2 - \frac{1}{2} T_1$ normal μ =0.7 σ^2 =0.7 ² + $\frac{1}{4} \times 0.75^2$ (0.630625)	M1 A1		Or ½ $T_1 - T_2$
		$(0-\mu)/\sigma$	A1 M1		From reasonable σ^2 not just sum
		-0.881 Probability 0.189	A1	A1	+ or - 6
(ii)	Use s	um of 5 Ts M1 μ =9.4 σ^2 =2.5225	A1 A1		
		z=(10- μ)/ σ Probability 0.6473,0.647	M1 A1	Stand 5	dardising, must be σ
	(iii)	Calculation of variance B1	1		

4734 Mark Scheme June 2006

8	(i)	$s_B^2 = \frac{1}{49}(630.194 - \frac{176.35^2}{50})$	M1		Any equivalent formula
		=0.1675	A1		May be implied by later work
		H_0 : $\mu_B - \mu_A = 0$, H_1 : $\mu_B - \mu_A > 0$	> 0 M1	B1	aef
		$z=0.115/\sqrt{(0.049/40+0.1675/50)}$	IVI I		Standardising but not from pooled variance estimate
		=1.700	A1		art 1.70
		$z > 1.645$, reject H_0	M1		Compare correctly with 1.645
		and accept that $\mu_B > \mu_A$	A1 √	7	ft their calculated z
	(ii)	$z = 0.09/\sqrt{(0.004575)}$	M1		Correct form
	` /	= 1.331	A 1		
		H_0 not rejected for $\alpha < 9.16$	M1 A	1	Accept $< 9.2, \le 9.2$. M1 for correct
				4	method for 9.2, A1 for inequality
		(iii) (a) Not necessary (b) Not necessary since samples large	 Je	B1	Ignore any reason
		enough for CLT to be applied (norm			
		of sample means giving normality o	f		
		difference)	M1		Mention of CLT implied by "sample large"
			A1	3	Sample mean (approx) normal. (Do not award if population or sample said to be normal)